Renormalization, freezing phase transitions and Fibonacci quasicrystals
[Renormalisation, transitions de phase congelantes et quasi-cristal de Fibonacci]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 739-763.

Voir la notice de l'article provenant de la source Numdam

We examine the renormalization operator determined by the Fibonacci substitution within the full shift on two symbols Σ:={0,1}. We exhibit a fixed point and determine its stable leaf (under iteration of the operator acting on potentials V:Σ), which is completely determined by the germ near the attractor of the substitution. Then we study the thermodynamic formalism for potentials in this stable leaf, and prove they have a freezing phase transition at finite temperature, with ground state supported on the attracting quasi-crystal associated to the Fibonacci substitution.

Nous étudions les relations entre renormalisation, substitutions et transitions de phase : nous montrons que la substitution de Fibonacci dans le shift plein à deux symboles Σ:={0,1}génère un opérateur de renormalisation sur les potentiels V:Σ. Nous montrons que cet opérateur possède un point fixe, uniquement déterminé par son germe proche de l'attracteur associé à la substitution de Fibonacci. Nous déterminons aussi la feuille stable de ce point fixe. Dans un second temps, nous montrons que tous les potentiels dans cette feuille stable présentent une transition de phase congelante. En particulier, cela donne un nouvel exemple d'obtention d'un état fondamental porté par un quasi-cristal avant le zéro absolu.

Publié le :
DOI : 10.24033/asens.2257
Classification : 37A35, 37A60, 37D20, 37D35, 47N10
Keywords: Thermodynamic formalism, equilibrium states, phase transition, substitution, Fibonacci numbers.
Mots-clés : Formalisme thermodynamique, états d'équilibre, transition de phase, substitution, nombres de Fibonacci.
@article{ASENS_2015__48_3_739_0,
     author = {Bruin, Henk and Leplaideur, Renaud},
     title = {Renormalization, freezing phase transitions and {Fibonacci} quasicrystals},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {739--763},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {3},
     year = {2015},
     doi = {10.24033/asens.2257},
     mrnumber = {3377058},
     zbl = {1335.82010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2257/}
}
TY  - JOUR
AU  - Bruin, Henk
AU  - Leplaideur, Renaud
TI  - Renormalization, freezing phase transitions and Fibonacci quasicrystals
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 739
EP  - 763
VL  - 48
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2257/
DO  - 10.24033/asens.2257
LA  - en
ID  - ASENS_2015__48_3_739_0
ER  - 
%0 Journal Article
%A Bruin, Henk
%A Leplaideur, Renaud
%T Renormalization, freezing phase transitions and Fibonacci quasicrystals
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 739-763
%V 48
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2257/
%R 10.24033/asens.2257
%G en
%F ASENS_2015__48_3_739_0
Bruin, Henk; Leplaideur, Renaud. Renormalization, freezing phase transitions and Fibonacci quasicrystals. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 739-763. doi : 10.24033/asens.2257. http://geodesic.mathdoc.fr/articles/10.24033/asens.2257/

Arnoux, P.; Rauzy, G. Représentation géométrique de suites de complexité 2n+1 , Bull. Soc. Math. France, Volume 119 (1991), pp. 199-215 (ISSN: 0037-9484) | MR | Zbl | mathdoc-id | DOI

Bramson, M.; Kalikow, S. Nonuniqueness in g-functions, Israel J. Math., Volume 84 (1993), pp. 153-160 (ISSN: 0021-2172) | MR | Zbl | DOI

Baraviera, R. A. L.; Lopes, A. O. The potential point of view for renormalization, Stoch. Dyn., Volume 12 (2012), 1250005 pages (ISSN: 0219-4937) | MR | Zbl | DOI

Bruin, H.; Leplaideur, R. Renormalization, thermodynamic formalism and quasi-crystals in subshifts, Comm. Math. Phys., Volume 321 (2013), pp. 209-247 (ISSN: 0010-3616) | MR | Zbl | DOI

Bowen, R., Lecture Notes in Math., 470, Springer, 1975, 108 pages | MR | Zbl

Bruin, H.; Vaienti, S. Return time statistics for unimodal maps, Fund. Math., Volume 176 (2003), pp. 77-94 (ISSN: 0016-2736) | MR | Zbl | DOI

Cortez, M. I.; Rivera-Letelier, J. Invariant measures of minimal post-critical sets of logistic maps, Israel J. Math., Volume 176 (2010), pp. 157-193 (ISSN: 0021-2172) | MR | Zbl | DOI

Coronel, D.; Rivera-Letelier, J. Low-temperature phase transitions in the quadratic family, Adv. Math., Volume 248 (2013), pp. 453-494 (ISSN: 0001-8708) | MR | Zbl | DOI

Contreras, A. O. G. L.; Thieullen, P. Lyapunov minimizing measures for expanding maps of the circle, Ergodic Theory Dynam. Systems, Volume 21 (2001), pp. 1379-1409 (ISSN: 0143-3857) | MR | Zbl | DOI

Georgii, H.-O., de Gruyter Studies in Mathematics, 9, Walter de Gruyter & Co., 2011, 545 pages (ISBN: 978-3-11-025029-9) | MR | Zbl | DOI

Grimmett, G., Institute of Mathematical Statistics Textbooks, 1, Cambridge Univ. Press, 2010, 247 pages (ISBN: 978-0-521-14735-4) | MR | Zbl

Hofbauer, F. Examples for the nonuniqueness of the equilibrium state, Trans. Amer. Math. Soc., Volume 228 (1977) (ISSN: 0002-9947) | MR | Zbl | DOI

Iommi, G.; Todd, M. Transience in Dynamical Systems, Ergodic Theory and Dynam. Systems, Volume 33 (2013), pp. 1450-1476 | MR | Zbl | DOI

Keller, G., London Mathematical Society Student Texts, 42, Cambridge Univ. Press, 1998, 178 pages (ISBN: 0-521-59420-0; 0-521-59534-7) | MR | Zbl

Kuipers, L.; Niederreiter, H., Wiley-Interscience, 1974, 390 pages | MR | Zbl

Ledrappier, F. Un exemple de transition de phase, Monatsh. Math., Volume 83 (1977), pp. 147-153 | MR | Zbl | DOI

Leplaideur, R. From local to global equilibrium states: thermodynamic formalism via inducing scheme, E.R.A. in Math. Sciences, Volume 21 (2014), pp. 72-79 | MR | Zbl

Makarov, N.; Smirnov, S. On thermodynamics of rational maps. II. Non-recurrent maps, J. London Math. Soc., Volume 67 (2003), pp. 417-432 (ISSN: 0024-6107) | MR | Zbl | DOI

Müller, G. Sätze über Folgen auf kompakten Räumen, Monatsh. Math., Volume 67 (1963), pp. 436-451 | MR | Zbl | DOI

Pomeau, Y.; Manneville, P. Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., Volume 74 (1980), pp. 189-197 http://projecteuclid.org/... (ISSN: 0010-3616) | MR | DOI

Pesin, Y.; Zhang, K. Phase transitions for uniformly expanding maps, J. Stat. Phys., Volume 122 (2006), pp. 1095-1110 (ISSN: 0022-4715) | MR | Zbl | DOI

Ruelle, D., Cambridge Mathematical Library, Cambridge Univ. Press, 2004, 174 pages (ISBN: 0-521-54649-4) | MR | Zbl | DOI

Ruelle, D., World Scientific Publishing Co. Inc., 1999, 219 pages (ISBN: 981-02-3862-2) | MR | Zbl

Sarig, O. Continuous phase transitions for dynamical systems, Comm. Math. Phys., Volume 267 (2006), pp. 631-667 (ISSN: 0010-3616) | MR | Zbl | DOI

Sinai, Y. Gibbs measures in ergodic theory,, Uspehi Mat. Nauk, Volume 27 (1972), pp. 21-64 | MR | Zbl

Sinai, Y., International Series in Natural Philosophy, 108, Pergamon Press, 1982, 150 pages (ISBN: 0-08-026469-7) | MR | Zbl

van Enter, A. C. D.; Miękisz, J. Breaking of periodicity at positive temperatures., Comm. Math. Phys., Volume 134 (1990), pp. 647-651 http://projecteuclid.org/... (ISSN: 0010-3616) | MR | Zbl | DOI

Weber, M. Méthodes de sommation matricielles, C. R. Acad. Sci. Paris Sér. I Math., Volume 315 (1992), pp. 759-764 (ISSN: 0764-4442) | MR | Zbl

Yuri, M. Phase transition, non-Gibbsianness and subexponential instability, Ergodic Theory Dynam. Systems, Volume 25 (2005), pp. 1325-1342 (ISSN: 0143-3857) | MR | Zbl | DOI

Cité par Sources :