Voir la notice de l'article provenant de la source Numdam
Let be a fixed cuspidal (holomorphic or Maaß) newform. We prove a Weyl-exponent subconvexity bound for the twisted -function of with a Dirichlet character of prime power conductor (with an explicit polynomial dependence on and ). We obtain our result by exhibiting strong cancellation between the Hecke eigenvalues of and the values of , which act as twists by exponentials with a -adically analytic phase. Among the tools, we develop a general result on -adic approximation by rationals (a -adic counterpart to Farey dissection) and a -adic version of van der Corput's method for exponential sums.
Soit une forme primitive nouvelle (holomorphe ou de Maass). Soient un nombre premier, un entier, et un nombre réel. Nous démontrons une borne sous-convexe de type Weyl pour la fonction de , tordue par un caractère de Dirichlet de conducteur . Plus précisément, on démontre , avec une dépendance polynomiale et explicite en et . La preuve repose sur la compensation entre les valeurs propres de Hecke de et les valeurs de , dont l'oscillation est gouvernée par une phase -adique analytique. Au cours de la démonstration, on développe quelques outils -adiques, analogues de méthodes classiques ou archimédiennes, telles que la dissection de Farey et la méthode de van der Corput pour les sommes d'exponentielles.
@article{ASENS_2015__48_3_561_0, author = {Blomer, Valentin and Mili\'cevi\'c, Djordje}, title = {$p$-adic analytic twists and strong subconvexity}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {561--605}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {3}, year = {2015}, doi = {10.24033/asens.2252}, mrnumber = {3377053}, zbl = {1401.11095}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2252/} }
TY - JOUR AU - Blomer, Valentin AU - Milićević, Djordje TI - $p$-adic analytic twists and strong subconvexity JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 561 EP - 605 VL - 48 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2252/ DO - 10.24033/asens.2252 LA - en ID - ASENS_2015__48_3_561_0 ER -
%0 Journal Article %A Blomer, Valentin %A Milićević, Djordje %T $p$-adic analytic twists and strong subconvexity %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 561-605 %V 48 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2252/ %R 10.24033/asens.2252 %G en %F ASENS_2015__48_3_561_0
Blomer, Valentin; Milićević, Djordje. $p$-adic analytic twists and strong subconvexity. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 561-605. doi : 10.24033/asens.2252. http://geodesic.mathdoc.fr/articles/10.24033/asens.2252/
A topological Tits alternative, Ann. of Math., Volume 166 (2007), pp. 427-474 (ISSN: 0003-486X) | MR | Zbl | DOI
Hybrid bounds for twisted -functions, J. reine angew. Math., Volume 621 (2008), pp. 53-79 addendum: J. reine angew. Math. 694 (2014), 241–244 (ISSN: 0075-4102) | MR | Zbl | DOI
Distribution of mass of holomorphic cusp forms, Duke Math. J., Volume 162 (2013), pp. 2609-2644 (ISSN: 0012-7094) | MR | Zbl | DOI
On prime numbers in an arithmetic progression with a prime-power difference, Acta Arith., Volume 9 (1964), pp. 375-390 (ISSN: 0065-1036) | MR | Zbl | DOI
Hybrid bounds for automorphic forms on ellipsoids over number fields, J. Inst. Math. Jussieu, Volume 12 (2013), pp. 727-758 (ISSN: 1474-7480) | MR | Zbl | DOI
Kloosterman sums in residue classes, J. Eur. Math. Soc. (JEMS), Volume 17 (2015), pp. 51-69 (ISSN: 1435-9855) | MR | Zbl | DOI
The Second Moment of Twisted Modular -Functions, Geom. Funct. Anal., Volume 25 (2015), pp. 453-516 (ISSN: 1016-443X) | MR | Zbl | DOI
On character sums and -series. II, Proc. London Math. Soc., Volume 13 (1963), pp. 524-536 (ISSN: 0024-6115) | MR | Zbl | DOI
A trace formula for the scalar product of Hecke series and its applications, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 226 (1996), pp. 14-36 ; English translation: J. Math. Sci. (New York) 89 (1998), 915–932 (ISSN: 0373-2703) | MR | Zbl | DOI
The cubic moment of central values of automorphic -functions, Ann. of Math., Volume 151 (2000), pp. 1175-1216 (ISSN: 0003-486X) | MR | Zbl | DOI
Integral points of bounded height on partial equivariant compactifications of vector groups, Duke Math. J., Volume 161 (2012), pp. 2799-2836 (ISSN: 0012-7094) | MR | Zbl | DOI
Analytic van der Corput lemma for -adic and oscillatory integrals, singular Fourier transforms, and restriction theorems, Expo. Math., Volume 29 (2011), pp. 371-386 (ISSN: 0723-0869) | MR | Zbl | DOI
Algebraic trace functions over the primes, Duke Math. J., Volume 163 (2014), pp. 1683-1736 (ISSN: 0012-7094) | MR | Zbl | DOI
Algebraic twists of modular forms and Hecke orbits, Geom. Funct. Anal., Volume 25 (2015), pp. 580-657 (ISSN: 1016-443X) | MR | Zbl | DOI
, London Mathematical Society Lecture Note Series, 126, Cambridge Univ. Press, Cambridge, 1991, 120 pages (ISBN: 0-521-33927-8) | MR | Zbl | DOI
The square mean of Dirichlet series associated with cusp forms, Mathematika, Volume 29 (1982), pp. 278-295 (ISSN: 0025-5793) | MR | Zbl | DOI
, Academic Press, Inc., San Diego, CA, 2000, 1163 pages (ISBN: 0-12-294757-6) |Hybrid bounds for Dirichlet -functions, Invent. Math., Volume 47 (1978), pp. 149-170 (ISSN: 0020-9910) | MR | Zbl | DOI
The subconvexity problem for Rankin-Selberg -functions and equidistribution of Heegner points. II, Invent. Math., Volume 163 (2006), pp. 581-655 (ISSN: 0020-9910) | MR | Zbl | DOI
On the sup-norm of Maass cusp forms of large level. III, Math. Ann., Volume 356 (2013), pp. 209-216 (ISSN: 0025-5831) | MR | Zbl | DOI
, American Mathematical Society Colloquium Publications, 53, Amer. Math. Soc., Providence, RI, 2004, 615 pages (ISBN: 0-8218-3633-1) | MR | Zbl
, Graduate Studies in Math., 17, Amer. Math. Soc., Providence, RI, 1997, 259 pages (ISBN: 0-8218-0777-3) | MR | Zbl
Uniform bound for Hecke -functions, Acta Math., Volume 195 (2005), pp. 61-115 (ISSN: 0001-5962) | MR | Zbl | DOI
, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 80, Tata Institute of Fundamental Research, Bombay, 1987, 134 pages (ISBN: 3-540-18366-3) | MR | Zbl
Rankin-Selberg -functions in the level aspect, Duke Math. J., Volume 114 (2002), pp. 123-191 (ISSN: 0012-7094) | MR | Zbl | DOI
Über die -Funktion und die -Funktionen, Math. Z., Volume 20 (1924), pp. 105-125 (ISSN: 0025-5874) | MR | JFM | DOI
Researches in the theory of the Riemann -function, Proc. Lond. Math. Soc., Volume 20 (1922), pp. xxiv | JFM
, Number theory, Vol. I (Budapest, 1987) (Colloq. Math. Soc. János Bolyai), Volume 51, North-Holland, Amsterdam, 1990, pp. 325-354 | MR | Zbl
Sub-Weyl subconvexity for Dirichlet -functions to prime power moduli (preprint arXiv:1407.4100, to appear in Compositio Math ) | MR
Bounds for twisted symmetric square -functions—III, Adv. Math., Volume 235 (2013), pp. 74-91 (ISSN: 0001-8708) | MR | Zbl | DOI
Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math., Volume 172 (2010), pp. 989-1094 (ISSN: 0003-486X) | MR | Zbl | DOI
A fast algorithm to compute , J. Number Theory, Volume 133 (2013), pp. 1502-1524 (ISSN: 0022-314X) | MR | Zbl | DOI
Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann., Volume 77 (1916), pp. 313-352 (ISSN: 0025-5831) | MR | JFM | DOI
Cité par Sources :