Equidistribution results for singular metrics on line bundles
[Résultats d'équidistribution pour métriques singulières sur des fibrés en droites]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 497-536.

Voir la notice de l'article provenant de la source Numdam

Let (L,h) be a holomorphic line bundle with a positively curved singular Hermitian metric over a complex manifold X. One can define naturally the sequence of Fubini-Study currents γp associated to the space of L2-holomorphic sections of Lp. Assuming that the singular set of the metric is contained in a compact analytic subset Σ of X and that the logarithm of the Bergman density function of LpXΣ grows like o(p) as p, we prove the following:

1) the currents γpk converge weakly on the whole X to c1(L,h)k, where c1(L,h) is the curvature current of h.

2) the expectations of the common zeros of a random k-tuple of L2-holomorphic sections converge weakly in the sense of currents to c1(L,h)k.

Here k is so that codimΣk. Our weak asymptotic condition on the Bergman density function is known to hold in many cases, as it is a consequence of its asymptotic expansion. We also prove it here in a quite general setting. We then show that many important geometric situations (singular metrics on big line bundles, Kähler-Einstein metrics on Zariski-open sets, arithmetic quotients) fit into our framework.

Considérons un fibré holomorphe en droites L muni d'une métrique singulière h au-dessus d'une variété complexe X. Soit γp le courant de Fubini-Study associé naturellement à l'espace des sections holomorphes de carré intégrable de Lp. En supposant que le lieu singulier de la métrique h est contenu dans un ensemble analytique compact ΣX tel que codimΣk et que le logarithme du noyau de Bergman associé à LpXΣ a l'ordre de croissance o(p), p, nous prouvons que :

1) Les courants γpk convergent faiblement sur X vers c1(L,h)k, où c1(L,h) est le courant de courbure de h.

2) Les moyennes des zéros communs d'un k-vecteur aléatoire de sections holomphes L2-intégrables convergent faiblement dans le sens des courants vers c1(L,h)k.

L'hypothèse de croissance du noyau de Bergman est la conséquence de son développement asymptotique dans le cas d'une métrique lisse h. Nous la démontrons ici sous des conditions assez générales. Nous montrons ensuite que nos résultats s'appliquent à nombre de situations géométriques (métriques singulières sur un fibré gros, métriques de Kähler-Einstein sur des ouverts de Zariski, quotients arithmétiques...).

Publié le :
DOI : 10.24033/asens.2250
Classification : 32L10; 32U40, 32W20, 53C55
Keywords: Bergman density function, Fubini-Study currents, singular Hermitian metric, equidistribution of zeros, random holomorphic sections.
Mots-clés : Noyau de Bergman, courants de Fubini-Study, métrique hermitienne singulière, équidistribution des zéros, sections holomorphes aléatoires.
@article{ASENS_2015__48_3_497_0,
     author = {Coman, Dan and Marinescu, George},
     title = {Equidistribution results for singular metrics on line bundles},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {497--536},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {3},
     year = {2015},
     doi = {10.24033/asens.2250},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2250/}
}
TY  - JOUR
AU  - Coman, Dan
AU  - Marinescu, George
TI  - Equidistribution results for singular metrics on line bundles
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 497
EP  - 536
VL  - 48
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2250/
DO  - 10.24033/asens.2250
LA  - en
ID  - ASENS_2015__48_3_497_0
ER  - 
%0 Journal Article
%A Coman, Dan
%A Marinescu, George
%T Equidistribution results for singular metrics on line bundles
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 497-536
%V 48
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2250/
%R 10.24033/asens.2250
%G en
%F ASENS_2015__48_3_497_0
Coman, Dan; Marinescu, George. Equidistribution results for singular metrics on line bundles. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 497-536. doi : 10.24033/asens.2250. http://geodesic.mathdoc.fr/articles/10.24033/asens.2250/

Andreotti, A.; Grauert, H. Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, Volume 90 (1962), pp. 193-259 (ISSN: 0037-9484) | MR | Zbl | mathdoc-id | DOI

Ash, A.; Mumford, D.; Rapoport, M.; Tai, Y.-S., Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 2010, 230 pages (ISBN: 978-0-521-73955-9) | MR | Zbl | DOI

Berman, R. J.; Boucksom, S. Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., Volume 181 (2010), pp. 337-394 (ISSN: 0020-9910) | MR | Zbl | DOI

Berman, R. J.; Berndtsson, B.; Sjöstrand, J. A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat., Volume 46 (2008), pp. 197-217 (ISSN: 0004-2080) | MR | Zbl | DOI

Berman, R. J. Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math., Volume 131 (2009), pp. 1485-1524 (ISSN: 0002-9327) | MR | Zbl | DOI

Bierstone, E.; Milman, P. D. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., Volume 128 (1997), pp. 207-302 (ISSN: 0020-9910) | MR | Zbl | DOI

Bedford, E.; Taylor, B. A. The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44 (ISSN: 0020-9910) | MR | Zbl | DOI

Bedford, E.; Taylor, B. A. A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 (ISSN: 0001-5962) | MR | Zbl | DOI

Błocki, Z. On the definition of the Monge-Ampère operator in 2 , Math. Ann., Volume 328 (2004), pp. 415-423 (ISSN: 0025-5831) | MR | Zbl | DOI

Błocki, Z. The domain of definition of the complex Monge-Ampère operator, Amer. J. Math., Volume 128 (2006), pp. 519-530 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI

Catlin, D., Analysis and geometry in several complex variables (Katata, 1997) (Trends Math.), Birkhäuser, 1999, pp. 1-23 | MR | Zbl

Cegrell, U. The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 159-179 http://aif.cedram.org/item?id=AIF_2004__54_1_159_0 (ISSN: 0373-0956) | MR | mathdoc-id | Zbl | DOI

Coman, D.; Guedj, V.; Zeriahi, A. Domains of definition of Monge-Ampère operators on compact Kähler manifolds, Math. Z., Volume 259 (2008), pp. 393-418 (ISSN: 0025-5874) | MR | Zbl | DOI

Coman, D.; Marinescu, G. Convergence of Fubini-study currents for orbifold line bundles, Internat. J. Math., Volume 24 (2013), 1350051 pages (ISSN: 0129-167X) | MR | Zbl | DOI

Coman, D.; Marinescu, G. On the approximation of positive closed currents on compact Kähler manifolds, Math. Rep. (Bucur.), Volume 15 (2013), pp. 373-386 (ISSN: 1582-3067) | MR | Zbl

Colţoiu, M. On the Oka-Grauert principle for 1-convex manifolds, Math. Ann., Volume 310 (1998), pp. 561-569 (ISSN: 0025-5831) | MR | Zbl | DOI

Demailly, J.-P. Estimations L2 pour l'opérateur ¯ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. École Norm. Sup., Volume 15 (1982), pp. 457-511 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

Demailly, J.-P. Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992), pp. 361-409 (ISSN: 1056-3911) | MR | Zbl

Demailly, J.-P., Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Math.), Volume 1507, Springer, 1992, pp. 87-104 | MR | Zbl | DOI

Demailly, J.-P. A numerical criterion for very ample line bundles, J. Differential Geom., Volume 37 (1993), pp. 323-374 http://projecteuclid.org/euclid.jdg/1214453680 (ISSN: 0022-040X) | MR | Zbl

Demailly, J.-P., Complex analysis and geometry (Univ. Ser. Math.), Plenum, New York, 1993, pp. 115-193 | MR | Zbl | DOI

Dai, X.; Liu, K.; Ma, X. On the asymptotic expansion of Bergman kernel, J. Differential Geom., Volume 72 (2006), pp. 1-41 http://projecteuclid.org/euclid.jdg/1143593124 (ISSN: 0022-040X) | MR | Zbl

Dinh, T.-C.; Marinescu, G.; Schmidt, V. Equidistribution of zeros of holomorphic sections in the non-compact setting, J. Stat. Phys., Volume 148 (2012), pp. 113-136 (ISSN: 0022-4715) | MR | Zbl | DOI

Dinh, T.-C.; Sibony, N. Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv., Volume 81 (2006), pp. 221-258 (ISSN: 0010-2571) | MR | Zbl | DOI

Dinh, T.-C.; Sibony, N. Geometry of currents, intersection theory and dynamics of horizontal-like maps, Ann. Inst. Fourier (Grenoble), Volume 56 (2006), pp. 423-457 http://aif.cedram.org/item?id=AIF_2006__56_2_423_0 (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI

Federer, H., Grundl. math. Wiss., 153, Springer, 1969, 676 pages | MR | Zbl

Folland, G. B.; Kohn, J. J., Ann. of Math. Studies, 75, Princeton Univ. Press, Princeton, N.J., 1972, 146 pages | MR | Zbl

Folland, G. B., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999, 386 pages (ISBN: 0-471-31716-0) | MR | Zbl

Fornæss, J. E.; Sibony, N., Modern methods in complex analysis (Princeton, NJ, 1992) (Ann. of Math. Stud.), Volume 137, Princeton Univ. Press, Princeton, NJ, 1995, pp. 135-182 | MR | Zbl

Fornæss, J. E.; Sibony, N. Oka's inequality for currents and applications, Math. Ann., Volume 301 (1995), pp. 399-419 (ISSN: 0025-5831) | MR | Zbl | DOI

Gauduchon, P. Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B, Volume 285 (1977), p. A387-A390 | MR | Zbl

Gunning, R. C.; Rossi, H., AMS Chelsea Publishing, Providence, RI, 2009, 318 pages (ISBN: 978-0-8218-2165-7) | MR | Zbl

Guedj, V.; Zeriahi, A. Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005), pp. 607-639 (ISSN: 1050-6926) | MR | Zbl | DOI

Guedj, V.; Zeriahi, A. The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007), pp. 442-482 (ISSN: 0022-1236) | MR | Zbl | DOI

Harvey, R., Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), Amer. Math. Soc., Providence, R. I., 1977, pp. 309-382 | MR | Zbl

Hsiao, C.-Y.; Marinescu, G. Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles, Comm. Anal. Geom., Volume 22 (2014), pp. 1-108 (ISSN: 1019-8385) | MR | Zbl | DOI

Hörmander, L., Modern Birkhäuser Classics, Birkhäuser, 2007, 414 pages (ISBN: 978-0-8176-4584-7; 0-8176-4584-5) | MR | Zbl

Holowinsky, R.; Soundararajan, K. Mass equidistribution for Hecke eigenforms, Ann. of Math., Volume 172 (2010), pp. 1517-1528 (ISSN: 0003-486X) | MR | Zbl | DOI

Ji, S.; Shiffman, B. Properties of compact complex manifolds carrying closed positive currents, J. Geom. Anal., Volume 3 (1993), pp. 37-61 (ISSN: 1050-6926) | MR | Zbl | DOI

Kobayashi, R. Kähler-Einstein metric on an open algebraic manifold, Osaka J. Math., Volume 21 (1984), pp. 399-418 http://projecteuclid.org/euclid.ojm/1200777118 (ISSN: 0030-6126) | MR | Zbl

Lelong, P.; Gruman, L., Grundl. math. Wiss., 282, Springer, 1986, 270 pages (ISBN: 3-540-15296-2) | MR | Zbl | DOI

Marshall, S. Mass equidistribution for automorphic forms of cohomological type on GL2 , J. Amer. Math. Soc., Volume 24 (2011), pp. 1051-1103 (ISSN: 0894-0347) | MR | Zbl | DOI

Marinescu, G.; Dinh, T.-C. On the compactification of hyperconcave ends and the theorems of Siu-Yau and Nadel, Invent. Math., Volume 164 (2006), pp. 233-248 (ISSN: 0020-9910) | MR | Zbl | DOI

Ma, X.; Marinescu, G. Generalized Bergman kernels on symplectic manifolds, C. R. Math. Acad. Sci. Paris, Volume 339 (2004), pp. 493-498 (ISSN: 1631-073X) | MR | Zbl | DOI

Ma, X.; Marinescu, G., Progress in Math., 254, Birkhäuser, 2007, 422 pages (ISBN: 978-3-7643-8096-0) | MR | Zbl

Ma, X.; Marinescu, G. Generalized Bergman kernels on symplectic manifolds, Adv. Math., Volume 217 (2008), pp. 1756-1815 (ISSN: 0001-8708) | MR | Zbl | DOI

Mumford, D. Hirzebruch's proportionality theorem in the noncompact case, Invent. Math., Volume 42 (1977), pp. 239-272 (ISSN: 0020-9910) | MR | Zbl | DOI

Nadel, A. On complex manifolds which can be compactified by adding finitely many points, Invent. Math., Volume 101 (1990), pp. 173-189 (ISSN: 0020-9910) | MR | Zbl | DOI

Ohsawa, T.; Takegoshi, K. On the extension of L2 holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204 (ISSN: 0025-5874) | MR | Zbl | DOI

Rudnick, Z.; Sarnak, P. The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys., Volume 161 (1994), pp. 195-213 http://projecteuclid.org/euclid.cmp/1104269797 (ISSN: 0010-3616) | MR | Zbl | DOI

Ruan, W.-D. Canonical coordinates and Bergmann metrics, Comm. Anal. Geom., Volume 6 (1998), pp. 589-631 (ISSN: 1019-8385) | MR | Zbl | DOI

Rudnick, Z. On the asymptotic distribution of zeros of modular forms, Int. Math. Res. Not., Volume 2005 (2005), pp. 2059-2074 (ISSN: 1073-7928) | MR | Zbl | DOI

Shiffman, B. Convergence of random zeros on complex manifolds, Sci. China Ser. A, Volume 51 (2008), pp. 707-720 (ISSN: 1006-9283) | MR | Zbl | DOI

Sibony, N. Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J., Volume 52 (1985), pp. 157-197 (ISSN: 0012-7094) | MR | Zbl | DOI

Siu, Y. T. Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., Volume 27 (1974), pp. 53-156 (ISSN: 0020-9910) | MR | Zbl | DOI

Shiffman, B.; Zelditch, S. Random polynomials with prescribed Newton polytope, J. Amer. Math. Soc., Volume 17 (2004), pp. 49-108 (ISSN: 0894-0347) | MR | Zbl | DOI

Shiffman, B.; Zelditch, S. Number variance of random zeros on complex manifolds, Geom. Funct. Anal., Volume 18 (2008), pp. 1422-1475 (ISSN: 1016-443X) | MR | Zbl | DOI

Shiffman, B.; Zelditch, S. Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys., Volume 200 (1999), pp. 661-683 (ISSN: 0010-3616) | MR | Zbl | DOI

Tian, G. On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990), pp. 99-130 http://projecteuclid.org/euclid.jdg/1214445039 (ISSN: 0022-040X) | MR | Zbl

To, W.-K. Distribution of zeros of sections of canonical line bundles over towers of covers, J. London Math. Soc., Volume 63 (2001), pp. 387-399 (ISSN: 0024-6107) | MR | Zbl | DOI

Yau, S. T. A general Schwarz lemma for Kähler manifolds, Amer. J. Math., Volume 100 (1978), pp. 197-203 (ISSN: 0002-9327) | MR | Zbl | DOI

Zelditch, S. Szegő kernels and a theorem of Tian, Int. Math. Res. Not., Volume 1998 (1998), pp. 317-331 (ISSN: 1073-7928) | MR | Zbl | DOI

Cité par Sources :