Voir la notice de l'article provenant de la source Numdam
In this paper we show that for metrics with conormal singularities that correspond to class , , the reflected wave is more regular than the incident wave in a Sobolev sense. This is helpful in the analysis of the multiple scattering series since higher order terms can be effectively `peeled off'.
Dans cet article nous montrons que, pour une métrique avec des singularités conormales qui correspondent à la classe , , l'onde réfléchie est plus régulière que l'onde incidente dans un sens Sobolev. Cela s'avère utile à l'analyse des séries de diffusion multiple, les termes d'ordres les plus élevés pouvant être ôtés de manière effective.
@article{ASENS_2015__48_2_351_0, author = {de Hoop, Maarten and Uhlmann, Gunther and Vasy, Andr\'as}, title = {Diffraction from conormal singularities}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {351--408}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {2}, year = {2015}, doi = {10.24033/asens.2247}, zbl = {1322.58025}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2247/} }
TY - JOUR AU - de Hoop, Maarten AU - Uhlmann, Gunther AU - Vasy, András TI - Diffraction from conormal singularities JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 351 EP - 408 VL - 48 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2247/ DO - 10.24033/asens.2247 LA - en ID - ASENS_2015__48_2_351_0 ER -
%0 Journal Article %A de Hoop, Maarten %A Uhlmann, Gunther %A Vasy, András %T Diffraction from conormal singularities %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 351-408 %V 48 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2247/ %R 10.24033/asens.2247 %G en %F ASENS_2015__48_2_351_0
de Hoop, Maarten; Uhlmann, Gunther; Vasy, András. Diffraction from conormal singularities. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 351-408. doi : 10.24033/asens.2247. http://geodesic.mathdoc.fr/articles/10.24033/asens.2247/
, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) (Proc. Sympos. Pure Math.), Volume 43, Amer. Math. Soc., Providence, RI, 1985, pp. 5-16 | MR | Zbl | DOI
A phase space transform adapted to the wave equation, Comm. Partial Differential Equations, Volume 32 (2007), pp. 1065-1101 (ISSN: 0360-5302) | MR | Zbl | DOI
Characteristic space-time estimates for the wave equation, Math. Z., Volume 236 (2001), pp. 113-131 (ISSN: 0025-5874) | MR | Zbl | DOI
Oscillatory integrals with singular symbols, Duke Math. J., Volume 48 (1981), pp. 251-267 http://projecteuclid.org/euclid.dmj/1077314493 (ISSN: 0012-7094) | MR | Zbl | DOI
Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, J. Funct. Anal., Volume 89 (1990), pp. 202-232 (ISSN: 0022-1236) | MR | Zbl | DOI
Recovering singularities of a potential from singularities of scattering data, Comm. Math. Phys., Volume 157 (1993), pp. 549-572 http://projecteuclid.org/euclid.cmp/1104254021 (ISSN: 0010-3616) | MR | Zbl | DOI
Fourier integral operators. I, Acta Math., Volume 127 (1971), pp. 79-183 (ISSN: 0001-5962) | MR | Zbl | DOI
On the existence and the regularity of solutions of linear pseudo-differential equations, Enseignement Math., Volume 17 (1971), pp. 99-163 (ISSN: 0013-8584) | MR | Zbl
, Springer, 1983 (4 vols.)
Propagation des ondes dans les variétés à coins, Ann. Sci. École Norm. Sup., Volume 30 (1997), pp. 429-497 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI
Transformation of boundary problems, Acta Math., Volume 147 (1981), pp. 149-236 (ISSN: 0001-5962) | MR | Zbl | DOI
, Research Notes in Math., 4, A K Peters, Ltd., Wellesley, MA, 1993, 377 pages (ISBN: 1-56881-002-4) | MR | Zbl
Analytic -theory on manifolds with corners, Adv. Math., Volume 92 (1992), pp. 1-26 (ISSN: 0001-8708) | MR | Zbl | DOI
Singularities of boundary value problems. I, Comm. Pure Appl. Math., Volume 31 (1978), pp. 593-617 (ISSN: 0010-3640) | MR | Zbl | DOI
Singularities of boundary value problems. II, Comm. Pure Appl. Math., Volume 35 (1982), pp. 129-168 (ISSN: 0010-3640) | MR | Zbl | DOI
Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math., Volume 32 (1979), pp. 483-519 (ISSN: 0010-3640) | MR | Zbl | DOI
A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998), pp. 797-835 (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI
On the norm of spectral clusters for compact manifolds with boundary, Acta Math., Volume 198 (2007), pp. 107-153 (ISSN: 0001-5962) | MR | Zbl | DOI
Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math., Volume 122 (2000), pp. 349-376 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI
Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc., Volume 15 (2002), pp. 419-442 (ISSN: 0894-0347) | MR | Zbl | DOI
, Mathematical Surveys and Monographs, 81, Amer. Math. Soc., Providence, RI, 2000, 257 pages (ISBN: 0-8218-2633-6) | MR | Zbl
, Recent advances in differential equations and mathematical physics (Contemp. Math.), Volume 412, Amer. Math. Soc., Providence, RI, 2006, pp. 315-333 | MR | Zbl | DOI
Propagation of singularities for the wave equation on manifolds with corners, Ann. of Math., Volume 168 (2008), pp. 749-812 (ISSN: 0003-486X) | MR | Zbl | DOI
Diffraction at corners for the wave equation on differential forms, Comm. Partial Differential Equations, Volume 35 (2010), pp. 1236-1275 (ISSN: 0360-5302) | MR | Zbl | DOI
Cité par Sources :