Monodromy and the Lefschetz fixed point formula
[Monodromie et formule des points fixes de Lefschetz]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 313-349.

Voir la notice de l'article provenant de la source Numdam

We give a new proof—not using resolution of singularities—of a formula of Denef and the second author expressing the Lefschetz number of iterates of the monodromy of a function on a smooth complex algebraic variety in terms of the Euler characteristic of a space of truncated arcs. Our proof uses -adic cohomology of non-archimedean spaces, motivic integration and the Lefschetz fixed point formula for finite order automorphisms. We also consider a generalization due to Nicaise and Sebag and at the end of the paper we discuss connections with the motivic Serre invariant and the motivic Milnor fiber.

Nous donnons une nouvelle preuve — n'utilisant pas la résolution des singularités — d'une formule de Denef et du second auteur exprimant le nombre de Lefschetz des itérés de la monodromie d'une fonction sur une variété algébrique complexe en fonction de la caractéristique d'Euler d'un espace d'arcs tronqués. Notre preuve utilise la cohomologie -adique des espaces non-archimédiens, l'intégration motivique, ainsi que la formule des points fixes de Lefschetz pour les automorphismes d'ordre fini. Nous considérons également une généralisation due à Nicaise et Sebag et la fin de l'article est consacrée aux relations avec l'invariant de Serre motivique et la fibre de Milnor motivique.

Publié le :
DOI : 10.24033/asens.2246
Classification : 03C98, 14B05, 14J17, 32S25, 32S55.
Keywords: Motivic integration, non-archimedean geometry, monodromy, Milnor fiber.
Mots-clés : Intégration motivique, géométrie non-archimédienne, monodromie, fibre de Milnor.
@article{ASENS_2015__48_2_313_0,
     author = {Hrushovski, Ehud and Loeser, Fran\c{c}ois},
     title = {Monodromy and  the {Lefschetz} fixed point formula},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {313--349},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {2},
     year = {2015},
     doi = {10.24033/asens.2246},
     mrnumber = {3346173},
     zbl = {1400.14015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2246/}
}
TY  - JOUR
AU  - Hrushovski, Ehud
AU  - Loeser, François
TI  - Monodromy and  the Lefschetz fixed point formula
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 313
EP  - 349
VL  - 48
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2246/
DO  - 10.24033/asens.2246
LA  - en
ID  - ASENS_2015__48_2_313_0
ER  - 
%0 Journal Article
%A Hrushovski, Ehud
%A Loeser, François
%T Monodromy and  the Lefschetz fixed point formula
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 313-349
%V 48
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2246/
%R 10.24033/asens.2246
%G en
%F ASENS_2015__48_2_313_0
Hrushovski, Ehud; Loeser, François. Monodromy and  the Lefschetz fixed point formula. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 313-349. doi : 10.24033/asens.2246. http://geodesic.mathdoc.fr/articles/10.24033/asens.2246/

A'Campo, N. Le nombre de Lefschetz d'une monodromie, Nederl. Akad. Wetensch. Proc. Ser. A 76 = Indag. Math., Volume 35 (1973), pp. 113-118 | MR | Zbl | DOI

A'Campo, N. La fonction zêta d'une monodromie, Comment. Math. Helv., Volume 50 (1975), pp. 233-248 (ISSN: 0010-2571) | MR | Zbl | DOI

Berkovich, V. G. Finiteness theorems for vanishing cycles of formal schemes (2013) (preprint http://www.wisdom.weizmann.ac.il/~vova/FormIII_2013.pdf ) | MR

Berkovich, V. G. Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHÉS, Volume 78 (1993), pp. 5-161 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Berkovich, V. G. Vanishing cycles for formal schemes, Invent. Math., Volume 115 (1994), pp. 539-571 (ISSN: 0020-9910) | MR | Zbl | DOI

Berkovich, V. G. Vanishing cycles for formal schemes. II, Invent. Math., Volume 125 (1996), pp. 367-390 (ISSN: 0020-9910) | MR | Zbl | DOI

Brion, M. Polyèdres et réseaux, Enseign. Math., Volume 38 (1992), pp. 71-88 (ISSN: 0013-8584) | MR | Zbl

Dimca, A., Universitext, Springer, New York, 1992, 263 pages (ISBN: 0-387-97709-0) | MR | Zbl | DOI

Denef, J.; Loeser, F., European Congress of Mathematics, Vol. I (Barcelona, 2000) (Progr. Math.), Volume 201, Birkhäuser, 2001, pp. 327-348 | MR | Zbl

Denef, J.; Loeser, F. Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology, Volume 41 (2002), pp. 1031-1040 (ISSN: 0040-9383) | MR | Zbl | DOI

Deligne, P.; Lusztig, G. Representations of reductive groups over finite fields, Ann. of Math., Volume 103 (1976), pp. 103-161 (ISSN: 0003-486X) | MR | Zbl | DOI

Denef, J.; Loeser, F. Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998), pp. 505-537 (ISSN: 1056-3911) | MR | Zbl

Denef, J.; Loeser, F. Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999), pp. 201-232 (ISSN: 0020-9910) | MR | Zbl | DOI

Denef, J.; Loeser, F. Motivic exponential integrals and a motivic Thom-Sebastiani theorem, Duke Math. J., Volume 99 (1999), pp. 285-309 (ISSN: 0012-7094) | MR | Zbl | DOI

Ducros, A. Parties semi-algébriques d'une variété algébrique p-adique, Manuscripta Math., Volume 111 (2003), pp. 513-528 (ISSN: 0025-2611) | MR | Zbl | DOI

Faltings, G. The trace formula and Drinfelʼd's upper halfplane, Duke Math. J., Volume 76 (1994), pp. 467-481 (ISSN: 0012-7094) | MR | Zbl | DOI

Haskell, D.; Hrushovski, E.; Macpherson, D. Definable sets in algebraically closed valued fields: elimination of imaginaries, J. reine angew. Math., Volume 597 (2006), pp. 175-236 (ISSN: 0075-4102) | MR | Zbl | DOI

Hrushovski, E.; Kazhdan, D., Algebraic geometry and number theory (Progr. Math.), Volume 253, Birkhäuser, 2006, pp. 261-405 | MR | Zbl | DOI

Hrushovski, E.; Kazhdan, D. The value ring of geometric motivic integration, and the Iwahori Hecke algebra of SL 2 , Geom. Funct. Anal., Volume 17 (2008), pp. 1924-1967 (ISSN: 1016-443X) | MR | Zbl | DOI

Hrushovski, E.; Kazhdan, D. Motivic Poisson summation, Mosc. Math. J., Volume 9 (2009), pp. 569-623 (ISSN: 1609-3321) | MR | Zbl | DOI

Hrushovski, E. Valued fields, metastable groups (2004) (preprint http://www.math.jussieu.fr/~loeser/mst.pdf )

Ishida, M.-N. Polyhedral Laurent series and Brion's equalities, Internat. J. Math., Volume 1 (1990), pp. 251-265 (ISSN: 0129-167X) | MR | Zbl | DOI

Kontsevich, M.; Soibelman, Y. Stability structures, motivic Donaldson-Thomas invariants and cluster transformations (preprint arXiv:0811.2435 )

Lê Quy, T. Proofs of the integral identity conjecture over algebraically closed fields, Duke Math. J., Volume 164 (2015), pp. 157-194 (ISSN: 0012-7094) | MR | Zbl | DOI

Lipshitz, L. Rigid subanalytic sets, Amer. J. Math., Volume 115 (1993), pp. 77-108 (ISSN: 0002-9327) | MR | Zbl | DOI

Loeser, F., Algebraic geometry—Seattle 2005. Part 2 (Proc. Sympos. Pure Math.), Volume 80, Amer. Math. Soc., Providence, RI, 2009, pp. 745-784 | MR | Zbl | DOI

Loeser, F.; Sebag, J. Motivic integration on smooth rigid varieties and invariants of degenerations, Duke Math. J., Volume 119 (2003), pp. 315-344 (ISSN: 0012-7094) | MR | Zbl | DOI

Martin, F. Cohomology of locally closed semi-algebraic subsets, Manuscripta Math., Volume 144 (2014), pp. 373-400 (ISSN: 0025-2611) | MR | Zbl | DOI

Milnor, J., Annals of Math. Studies, No. 61, Princeton Univ. Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968, 122 pages | MR | Zbl

Nicaise, J. A trace formula for rigid varieties, and motivic Weil generating series for formal schemes, Math. Ann., Volume 343 (2009), pp. 285-349 (ISSN: 0025-5831) | MR | Zbl | DOI

Nicaise, J. A trace formula for varieties over a discretely valued field, J. reine angew. Math., Volume 650 (2011), pp. 193-238 (ISSN: 0075-4102) | MR | Zbl | DOI

Nicaise, J.; Sebag, J. Motivic Serre invariants, ramification, and the analytic Milnor fiber, Invent. Math., Volume 168 (2007), pp. 133-173 (ISSN: 0020-9910) | MR | Zbl | DOI

van den Dries, L., London Mathematical Society Lecture Note Series, 248, Cambridge Univ. Press, Cambridge, 1998, 180 pages (ISBN: 0-521-59838-9) | MR | Zbl | DOI

Cité par Sources :