Control and mixing for 2D Navier-Stokes equations with space-time localised noise
[Contrôle et mélange pour des équations de Navier-Stokes 2D avec un bruit localisé en espace-temps]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 253-280.

Voir la notice de l'article provenant de la source Numdam

We consider randomly forced 2D Navier-Stokes equations in a bounded domain with smooth boundary. It is assumed that the random perturbation is non-degenerate, and its law is periodic in time and has a support localised with respect to space and time. Concerning the unperturbed problem, we assume that it is approximately controllable in infinite time by an external force whose support is included in that of the random force. Under these hypotheses, we prove that the Markov process generated by the restriction of solutions to the instants of time proportional to the period possesses a unique stationary distribution, which is exponentially mixing. The proof is based on a coupling argument, a local controllability property of the Navier-Stokes system, an estimate for the total variation distance between a measure and its image under a smooth mapping, and some classical results from the theory of optimal transport.

Nous considérons une perturbation aléatoire du système de Navier-Stokes 2D dans un domaine borné à bord régulier. On suppose que la force aléatoire est non dégénérée et que sa loi est périodique en temps et a un support localisé en espace et en temps. En ce qui concerne le problème non perturbé, on suppose qu'il est approximativement contrôlable en temps infini par une force extérieure dont le support est inclus dans celui de la force aléatoire. Sous ces hypothèses, on montre que le processus de Markov engendré par la restriction des solutions aux instants de temps proportionnels à la période possède une unique distribution stationnaire, qui est exponentiellement mélangeante. La démonstration est basée sur un argument de couplage, une propriété de contrôlabilité locale pour le système de Navier-Stokes, une estimation pour la distance en variation totale entre une mesure et son image par une application lisse et quelques résultats classiques de la théorie du transport optimal.

Publié le :
DOI : 10.24033/asens.2244
Classification : 35Q30, 60H15, 60J05, 93B05, 93C20.
Keywords: Navier-Stokes equations, stationary measures, exponential mixing.
Mots-clés : Équations de Navier-Stokes, mesures stationnaires, mélange exponentiel.
@article{ASENS_2015__48_2_253_0,
     author = {Shirikyan, Armen},
     title = {Control and mixing  for {2D} {Navier-Stokes} equations  with space-time localised noise},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {253--280},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {2},
     year = {2015},
     doi = {10.24033/asens.2244},
     mrnumber = {3346171},
     zbl = {1319.35167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2244/}
}
TY  - JOUR
AU  - Shirikyan, Armen
TI  - Control and mixing  for 2D Navier-Stokes equations  with space-time localised noise
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 253
EP  - 280
VL  - 48
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2244/
DO  - 10.24033/asens.2244
LA  - en
ID  - ASENS_2015__48_2_253_0
ER  - 
%0 Journal Article
%A Shirikyan, Armen
%T Control and mixing  for 2D Navier-Stokes equations  with space-time localised noise
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 253-280
%V 48
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2244/
%R 10.24033/asens.2244
%G en
%F ASENS_2015__48_2_253_0
Shirikyan, Armen. Control and mixing  for 2D Navier-Stokes equations  with space-time localised noise. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 253-280. doi : 10.24033/asens.2244. http://geodesic.mathdoc.fr/articles/10.24033/asens.2244/

Barbu, V. Feedback stabilization of Navier-Stokes equations, ESAIM Control Optim. Calc. Var., Volume 9 (2003), pp. 197-206 (ISSN: 1292-8119) | MR | Zbl | mathdoc-id | DOI

Bricmont, J.; Kupiainen, A.; Lefevere, R. Exponential mixing of the 2D stochastic Navier-Stokes dynamics, Comm. Math. Phys., Volume 230 (2002), pp. 87-132 (ISSN: 0010-3616) | MR | Zbl | DOI

Bogachev, V. I., Mathematical Surveys and Monographs, 164, Amer. Math. Soc., Providence, RI, 2010, 488 pages (ISBN: 978-0-8218-4993-4) | MR | Zbl | DOI

Barbu, V.; Rodrigues, S. S.; Shirikyan, A. Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., Volume 49 (2011), pp. 1454-1478 (ISSN: 0363-0129) | MR | Zbl | DOI

Barbu, V.; Triggiani, R. Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., Volume 53 (2004), pp. 1443-1494 (ISSN: 0022-2518) | MR | Zbl | DOI

Babin, A. V.; Vishik, M. I., Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992, 532 pages (ISBN: 0-444-89004-1) | MR | Zbl

Dudley, R. M., Cambridge Studies in Advanced Math., 74, Cambridge Univ. Press, Cambridge, 2002, 555 pages (ISBN: 0-521-00754-2) | MR | Zbl | DOI

E, W.; Mattingly, J. C.; Sinai, Y. Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys., Volume 224 (2001), pp. 83-106 (ISSN: 0010-3616) | MR | Zbl | DOI

Fernández-Cara, E.; Guerrero, S.; Imanuvilov, O. Y.; Puel, J.-P. Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl., Volume 83 (2004), pp. 1501-1542 (ISSN: 0021-7824) | MR | Zbl | DOI

Flandoli, F.; Maslowski, B. Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Comm. Math. Phys., Volume 172 (1995), pp. 119-141 http://projecteuclid.org/euclid.cmp/1104273961 (ISSN: 0010-3616) | MR | Zbl | DOI

Fursikov, A. V. Stabilization for the 3D Navier-Stokes system by feedback boundary control, Discrete Contin. Dyn. Syst., Volume 10 (2004), pp. 289-314 (ISSN: 1078-0947) | MR | Zbl | DOI

Fursikov, A. V.; Èmanuilov, O. Y. Exact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk, Volume 54, no. 3 (1999), pp. 93-146 (ISSN: 0042-1316) | MR | Zbl | DOI

Hairer, M. Exponential mixing properties of stochastic PDEs through asymptotic coupling, Probab. Theory Related Fields, Volume 124 (2002), pp. 345-380 (ISSN: 0178-8051) | MR | Zbl | DOI

Hairer, M.; Mattingly, J. C. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. of Math., Volume 164 (2006), pp. 993-1032 (ISSN: 0003-486X) | MR | Zbl | DOI

Hairer, M.; Mattingly, J. C. Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, Ann. Probab., Volume 36 (2008), pp. 2050-2091 (ISSN: 0091-1798) | MR | Zbl | DOI

Hairer, M.; Mattingly, J. C. A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, Electron. J. Probab., Volume 16 (2011), pp. no. 23, 658-738 (ISSN: 1083-6489) | MR | Zbl | DOI

Hörmander, L., Academic Press, New York, 1963

Imanuvilov, O. Y. Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., Volume 6 (2001), pp. 39-72 (ISSN: 1292-8119) | MR | Zbl | mathdoc-id | DOI

Ioffe, A. D.; Tihomirov, V. M., Studies in Mathematics and its Applications, 6, North-Holland Publishing Co., Amsterdam-New York, 1979, 460 pages (ISBN: 0-444-85167-4) | MR | Zbl

Kuksin, S.; Piatnitski, A.; Shirikyan, A. A coupling approach to randomly forced nonlinear PDEs. II, Comm. Math. Phys., Volume 230 (2002), pp. 81-85 (ISSN: 0010-3616) | MR | Zbl | DOI

Kuksin, S.; Shirikyan, A. Stochastic dissipative PDEs and Gibbs measures, Comm. Math. Phys., Volume 213 (2000), pp. 291-330 (ISSN: 0010-3616) | MR | Zbl | DOI

Kuksin, S.; Shirikyan, A. A coupling approach to randomly forced nonlinear PDE's. I, Comm. Math. Phys., Volume 221 (2001), pp. 351-366 (ISSN: 0010-3616) | MR | Zbl | DOI

Kuksin, S.; Shirikyan, A., Cambridge Univ. Press, 2012 | MR | Zbl

Kuksin, S. Diffeomorphisms of function spaces that correspond to quasilinear parabolic equations, Mat. Sb. (N.S.), Volume 117(159) (1982), p. 359-378, 431 (ISSN: 0368-8666) | MR | Zbl

Mattingly, J. C. Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics, Comm. Math. Phys., Volume 230 (2002), pp. 421-462 (ISSN: 0010-3616) | MR | Zbl | DOI

Masmoudi, N.; Young, L.-S. Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs, Comm. Math. Phys., Volume 227 (2002), pp. 461-481 (ISSN: 0010-3616) | MR | Zbl | DOI

Shirikyan, A. Exponential mixing for 2D Navier-Stokes equations perturbed by an unbounded noise, J. Math. Fluid Mech., Volume 6 (2004), pp. 169-193 (ISSN: 1422-6928) | MR | Zbl | DOI

Shirikyan, A., Instability in models connected with fluid flows. II (Int. Math. Ser. (N. Y.)), Volume 7, Springer, New York, 2008, pp. 155-188 | MR | Zbl | DOI

Temam, R., Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979, 519 pages (ISBN: 0-444-85307-3; 0-444-85308-1) | MR | Zbl

Thorisson, H., Probability and its applications, Springer, New York, 2000 | MR | Zbl

Vishik, M. I.; Fursikov, A. V., Kluwer, Dordrecht, 1988 | MR | Zbl

Villani, C., Grundl. math. Wiss., 338, Springer, Berlin, 2009, 973 pages (ISBN: 978-3-540-71049-3) | MR | Zbl | DOI

Zabczyk, J., Modern Birkhäuser Classics, Birkhäuser, Boston, MA, 2008, 260 pages (ISBN: 978-0-8176-4732-2) | MR | Zbl | DOI

Cité par Sources :