Voir la notice de l'article provenant de la source Numdam
We prove that the cohomology jump loci in the space of rank one local systems over a smooth quasi-projective variety are finite unions of torsion translates of subtori. The main ingredients are a recent result of Dimca-Papadima, some techniques introduced by Simpson, together with properties of the moduli space of logarithmic connections constructed by Nitsure and Simpson.
Dans cet article, on montre que les lieux de saut dans l'espace de systèmes locaux de rang un sur une variété lisse quasi-projective sont des réunions finies de subtores translatées par des éléments de torsion. Pour cela, nous utilisons un résultat récent de Dimca-Papadima, certaines techniques introduites par Simpson, ainsi que des propriétés de l'espace de moduli pour les connexions logarithmiques construit par Nitsure et Simpson.
@article{ASENS_2015__48_1_227_0, author = {Budur, Nero and Wang, Botong}, title = {Cohomology jump loci of quasi-projective varieties}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {227--236}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {1}, year = {2015}, doi = {10.24033/asens.2242}, mrnumber = {3335842}, zbl = {1319.14027}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2242/} }
TY - JOUR AU - Budur, Nero AU - Wang, Botong TI - Cohomology jump loci of quasi-projective varieties JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 227 EP - 236 VL - 48 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2242/ DO - 10.24033/asens.2242 LA - en ID - ASENS_2015__48_1_227_0 ER -
%0 Journal Article %A Budur, Nero %A Wang, Botong %T Cohomology jump loci of quasi-projective varieties %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 227-236 %V 48 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2242/ %R 10.24033/asens.2242 %G en %F ASENS_2015__48_1_227_0
Budur, Nero; Wang, Botong. Cohomology jump loci of quasi-projective varieties. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 1, pp. 227-236. doi : 10.24033/asens.2242. http://geodesic.mathdoc.fr/articles/10.24033/asens.2242/
Higgs line bundles, Green-Lazarsfeld sets, and maps of Kähler manifolds to curves, Bull. Amer. Math. Soc., Volume 26 (1992), pp. 310-314 (ISSN: 0273-0979) | MR | Zbl | DOI
Geometry of cohomology support loci for local systems. I, J. Algebraic Geom., Volume 6 (1997), pp. 563-597 (ISSN: 1056-3911) | MR | Zbl
Unitary local systems, multiplier ideals, and polynomial periodicity of Hodge numbers, Adv. Math., Volume 221 (2009), pp. 217-250 (ISSN: 0001-8708) | MR | Zbl | DOI
, Lecture Notes in Math., 163, Springer, 1970, 133 pages | MR | Zbl
, Universitext, Springer, 1992, 263 pages (ISBN: 0-387-97709-0) | MR | Zbl | DOI
Non-abelian cohomology jump loci from an analytic viewpoint, Comm. Contemp. Math., Volume 16 (2014) (ISSN: 0219-1997) | MR | Zbl | DOI
Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math., Volume 90 (1987), pp. 389-407 (ISSN: 0020-9910) | MR | Zbl | DOI
Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc., Volume 4 (1991), pp. 87-103 (ISSN: 0894-0347) | MR | Zbl | DOI
Kobayashi-Hitchin correspondence for tame harmonic bundles. II, Geom. Topol., Volume 13 (2009), pp. 359-455 (ISSN: 1465-3060) | MR | Zbl | DOI
Moduli of semistable logarithmic connections, J. Amer. Math. Soc., Volume 6 (1993), pp. 597-609 (ISSN: 0894-0347) | MR | Zbl | DOI
A conjecture of Beauville and Catanese revisited, Math. Ann., Volume 330 (2004), pp. 293-308 (ISSN: 0025-5831) | MR | Zbl | DOI
Holonomic D-modules on Abelian varieties, Publ. Math. IHÉS (2014) ( doi://10.1007/s10240-014-0061-x ) | mathdoc-id | MR
Torsion points on cohomology support loci: from D-modules to Simpson's theorem, Rec. Adv. Alg. Geom. (2015) | MR | Zbl
Harmonic bundles on noncompact curves, J. Amer. Math. Soc., Volume 3 (1990), pp. 713-770 (ISSN: 0894-0347) | MR | Zbl | DOI
Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup., Volume 26 (1993), pp. 361-401 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI
Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math. IHÉS, Volume 79 (1994), pp. 47-129 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI
Moduli of representations of the fundamental group of a smooth projective variety. II, Publ. Math. IHÉS, Volume 80 (1994), pp. 5-79 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI
Cité par Sources :