Cascades in the dynamics of measured foliations
[Cascades dans la dynamique des feuilletages mesurés]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 1, pp. 1-39.

Voir la notice de l'article provenant de la source Numdam

This paper studies the behavior of harmonic measured foliations on compact Riemann surfaces. Cascades in the dynamics of such a foliation can occur as its relative periods are varied. We show that in the case of genus 2, the bifurcation locus arising from such a variation is a closed, countable set of  that embeds in ωω.

Nous étudions le comportement des feuilletages mesurés harmoniques sur les surfaces de Riemann compactes. Quand les périodes relatives varient, on peut observer des cascades dans la dynamique d'un tel feuilletage. Dans le cas du genre 2, on montre que le lieu de bifurcation résultant d'une telle variation est un sous-ensemble dénombrable et fermé de , qui se plonge dans ωω.

Publié le :
DOI : 10.24033/asens.2237
Classification : 30F30.
Keywords: Riemann surfaces, Abelian differentials, measured foliations, periods.
Mots-clés : Surfaces de Riemann, différentielles abéliennes, feuilletages mesurés, périodes.
@article{ASENS_2015__48_1_1_0,
     author = {McMullen, Curtis T.},
     title = {Cascades in the dynamics  of measured foliations},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1--39},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {1},
     year = {2015},
     doi = {10.24033/asens.2237},
     mrnumber = {3335837},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2237/}
}
TY  - JOUR
AU  - McMullen, Curtis T.
TI  - Cascades in the dynamics  of measured foliations
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 1
EP  - 39
VL  - 48
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2237/
DO  - 10.24033/asens.2237
LA  - en
ID  - ASENS_2015__48_1_1_0
ER  - 
%0 Journal Article
%A McMullen, Curtis T.
%T Cascades in the dynamics  of measured foliations
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 1-39
%V 48
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2237/
%R 10.24033/asens.2237
%G en
%F ASENS_2015__48_1_1_0
McMullen, Curtis T. Cascades in the dynamics  of measured foliations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 1, pp. 1-39. doi : 10.24033/asens.2237. http://geodesic.mathdoc.fr/articles/10.24033/asens.2237/

Arnoux, P.; Bernat, J.; Bressaud, X. Geometrical models for substitutions, Exp. Math., Volume 20 (2011), pp. 97-127 (ISSN: 1058-6458) | MR | Zbl | DOI

Arnoux, P., Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (French) (Monograph. Enseign. Math.), Volume 29, Univ. Genève, Geneva, 1981, pp. 5-38 | MR | Zbl

Arnoux, P. Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore, Bull. Soc. Math. France, Volume 116 (1988), pp. 489-500 (ISSN: 0037-9484) | MR | Zbl | mathdoc-id | DOI

Arnoux, P.; Schmidt, T. A. Veech surfaces with nonperiodic directions in the trace field, J. Mod. Dyn., Volume 3 (2009), pp. 611-629 (ISSN: 1930-5311) | MR | Zbl | DOI

Arnoux, P.; Yoccoz, J.-C. Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math., Volume 292 (1981), pp. 75-78 (ISSN: 0151-0509) | MR | Zbl

Boshernitzan, M. D. Rank two interval exchange transformations, Ergodic Theory Dynam. Systems, Volume 8 (1988), pp. 379-394 (ISSN: 0143-3857) | MR | Zbl | DOI

Borevich, A. I.; Shafarevich, I. R., Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, 20, Academic Press, 1966, 435 pages | MR | Zbl

Calabi, E., Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 101-117 | MR | Zbl

Dynnikov, I. A. Interval identification systems and plane sections of 3-periodic surfaces, Proc. Steklov Inst. Math., Volume 263 (2008), pp. 65-77 (ISSN: 0371-9685) | MR | Zbl | DOI

Fathi, A. Some compact invariant sets for hyperbolic linear automorphisms of torii [tori], Ergodic Theory Dynam. Systems, Volume 8 (1988), pp. 191-204 (ISSN: 0143-3857) | MR | Zbl | DOI

Fathi, A.; Laudenbach, F.; Poénaru, V. Travaux de Thurston sur les surfaces, Astérisque, Volume 66–67 (1979) | MR | Zbl | mathdoc-id

Franks, J., Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 61-93 | MR | Zbl

Fried, D. The geometry of cross sections to flows, Topology, Volume 21 (1982), pp. 353-371 (ISSN: 0040-9383) | MR | Zbl | DOI

Griffiths, P.; Harris, J., Wiley-Interscience, 1978, 813 pages (ISBN: 0-471-32792-1) | MR | Zbl

Hubert, P.; Lanneau, E.; Möller, M. The Arnoux-Yoccoz Teichmüller disc, Geom. Funct. Anal., Volume 18 (2009), pp. 1988-2016 (ISSN: 1016-443X) | MR | Zbl | DOI

Kenyon, R. The construction of self-similar tilings, Geom. Funct. Anal., Volume 6 (1996), pp. 471-488 (ISSN: 1016-443X) | MR | Zbl | DOI

Kenyon, R.; Smillie, J. Billiards on rational-angled triangles, Comment. Math. Helv., Volume 75 (2000), pp. 65-108 (ISSN: 0010-2571) | MR | Zbl | DOI

Kenyon, R.; Solomyak, B. On the characterization of expansion maps for self-affine tilings, Discrete Comput. Geom., Volume 43 (2010), pp. 577-593 (ISSN: 0179-5376) | MR | Zbl | DOI

Kontsevich, M.; Zorich, A. Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. math., Volume 153 (2003), pp. 631-678 (ISSN: 0020-9910) | MR | Zbl | DOI

Leutbecher, A. Über die Heckeschen Gruppen G(λ). II, Math. Ann., Volume 211 (1974), pp. 63-86 (ISSN: 0025-5831) | MR | Zbl | DOI

Levitt, G. Foliations and laminations on hyperbolic surfaces, Topology, Volume 22 (1983), pp. 119-135 (ISSN: 0040-9383) | MR | Zbl | DOI

Lowenstein, J. H.; Poggiaspalla, G.; Vivaldi, F. Interval exchange transformations over algebraic number fields: the cubic Arnoux-Yoccoz model, Dyn. Syst., Volume 22 (2007), pp. 73-106 (ISSN: 1468-9367) | MR | Zbl | DOI

Masur, H. Two boundaries of Teichmüller space, Duke Math. J., Volume 49 (1982), pp. 183-190 http://projecteuclid.org/euclid.dmj/1077315079 (ISSN: 0012-7094) | MR | Zbl | DOI

McMullen, C. T. Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., Volume 16 (2003), pp. 857-885 (ISSN: 0894-0347) | MR | Zbl | DOI

McMullen, C. T. Teichmüller geodesics of infinite complexity, Acta Math., Volume 191 (2003), pp. 191-223 (ISSN: 0001-5962) | MR | Zbl | DOI

McMullen, C. T. Teichmüller curves in genus two: the decagon and beyond, J. reine angew. Math., Volume 582 (2005), pp. 173-199 (ISSN: 0075-4102) | MR | Zbl | DOI

McMullen, C. T. Prym varieties and Teichmüller curves, Duke Math. J., Volume 133 (2006), pp. 569-590 (ISSN: 0012-7094) | MR | Zbl | DOI

McMullen, C. T. Dynamics of SL 2() over moduli space in genus two, Ann. of Math., Volume 165 (2007), pp. 397-456 (ISSN: 0003-486X) | MR | Zbl | DOI

McMullen, C. T. Foliations of Hilbert modular surfaces, Amer. J. Math., Volume 129 (2007), pp. 183-215 (ISSN: 0002-9327) | MR | Zbl | DOI

McMullen, C. T. Diophantine and ergodic foliations on surfaces, J. Topol., Volume 6 (2013), pp. 349-360 (ISSN: 1753-8416) | MR | Zbl | DOI

McMullen, C. T. Navigating moduli space with complex twists, J. Eur. Math. Soc. (JEMS), Volume 15 (2013), pp. 1223-1243 (ISSN: 1435-9855) | MR | Zbl | DOI

McMullen, C. T. Moduli spaces of isoperiodic forms on Riemann surfaces, Duke Math. J., Volume 163 (2014), pp. 2271-2323 (ISSN: 0012-7094) | MR | Zbl | DOI

Möller, M. Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc., Volume 19 (2006), pp. 327-344 (ISSN: 0894-0347) | MR | Zbl | DOI

Möller, M., Handbook of Teichmüller theory. Vol. II (IRMA Lect. Math. Theor. Phys.), Volume 13, Eur. Math. Soc., Zürich, 2009, pp. 369-387 | MR | Zbl | DOI

Mazurkiewicz, S.; Sierpiński, W. Contribution à la topologie des ensembles dénombrables, Fund. Math., Volume 1 (1920), pp. 17-27 | JFM | DOI

Masur, H.; Tabachnikov, S., Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089 | MR | Zbl | DOI

Novikov, S. P. The Hamiltonian formalism and a multivalued analogue of Morse theory, Russian Math. Surveys, Volume 37 (1982), pp. 1-56 (ISSN: 0042-1316) | MR | Zbl | DOI

Schwartzman, S. Asymptotic cycles, Ann. of Math., Volume 66 (1957), pp. 270-284 (ISSN: 0003-486X) | MR | Zbl | DOI

Strebel, K., Ergebn. Math. Grenzg., 5, Springer, Berlin, 1984, 184 pages (ISBN: 3-540-13035-7) | MR | Zbl | DOI

Smillie, J.; Ulcigrai, C., Dynamical numbers—interplay between dynamical systems and number theory (Contemp. Math.), Volume 532, Amer. Math. Soc., Providence, RI, 2010, pp. 29-65 | MR | Zbl | DOI

Sullivan, D. Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. math., Volume 36 (1976), pp. 225-255 (ISSN: 0020-9910) | MR | Zbl | DOI

Thurston, W. P. On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc., Volume 19 (1988), pp. 417-431 (ISSN: 0273-0979) | MR | Zbl | DOI

Veech, W. A. Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2 , Trans. Amer. Math. Soc., Volume 140 (1969), pp. 1-33 (ISSN: 0002-9947) | MR | Zbl

Veech, W. A. The metric theory of interval exchange transformations. III. The Sah-Arnoux-Fathi invariant, Amer. J. Math., Volume 106 (1984), pp. 1389-1422 (ISSN: 0002-9327) | MR | Zbl | DOI

Veech, W. A. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. math., Volume 97 (1989), pp. 553-583 (ISSN: 0020-9910) | MR | Zbl | DOI

Zorich, A., Pseudoperiodic topology (Amer. Math. Soc. Transl. Ser. 2), Volume 197, Amer. Math. Soc., Providence, RI, 1999, pp. 135-178 | MR | Zbl

Cité par Sources :