Diffusion for the periodic wind-tree model
[Diffusion du vent dans les arbres]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 6, pp. 1085-1110.

Voir la notice de l'article provenant de la source Numdam

The periodic wind-tree model is an infinite billiard in the plane with identical rectangular scatterers placed at each integer point. We prove that independently of the size of scatters and generically with respect to the angle, the polynomial diffusion rate in this billiard is 2/3.

Le vent dans les arbres périodique est un billard infini construit de la manière suivante. On considère le plan dans lequel sont placés des obstacles rectangulaires identiques à chaque point entier. Une particule (identifiée à un point) se déplace en ligne droite (le vent) et rebondit de manière élastique sur les obstacles (les arbres). Nous prouvons qu'indépendamment de la taille des obstacles et génériquement par rapport à l'angle initial de la particule le coefficient de diffusion polynomial des orbites de ce billard est 2/3.

Publié le :
DOI : 10.24033/asens.2234
Classification : 30F30, 37E35, 37A40.
Keywords: Billiards, diffusion, translations surfaces, Lyapunov exponents, ergodic averages.
Mots-clés : Billard, diffusion, surfaces de translation, exposants de Liapounoff, moyennes ergodiques.
@article{ASENS_2014__47_6_1085_0,
     author = {Delecroix, Vincent and Hubert, Pascal and Leli\`evre, Samuel},
     title = {Diffusion for the  periodic wind-tree model},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1085--1110},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {6},
     year = {2014},
     doi = {10.24033/asens.2234},
     mrnumber = {3297155},
     zbl = {1351.37159},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2234/}
}
TY  - JOUR
AU  - Delecroix, Vincent
AU  - Hubert, Pascal
AU  - Lelièvre, Samuel
TI  - Diffusion for the  periodic wind-tree model
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 1085
EP  - 1110
VL  - 47
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2234/
DO  - 10.24033/asens.2234
LA  - en
ID  - ASENS_2014__47_6_1085_0
ER  - 
%0 Journal Article
%A Delecroix, Vincent
%A Hubert, Pascal
%A Lelièvre, Samuel
%T Diffusion for the  periodic wind-tree model
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 1085-1110
%V 47
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2234/
%R 10.24033/asens.2234
%G en
%F ASENS_2014__47_6_1085_0
Delecroix, Vincent; Hubert, Pascal; Lelièvre, Samuel. Diffusion for the  periodic wind-tree model. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 6, pp. 1085-1110. doi : 10.24033/asens.2234. http://geodesic.mathdoc.fr/articles/10.24033/asens.2234/

Bainbridge, M. Euler characteristics of Teichmüller curves in genus two, Geom. Topol., Volume 11 (2007), pp. 1887-2073 (ISSN: 1465-3060) | MR | Zbl | DOI

Bouw, I. I.; Möller, M. Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math., Volume 172 (2010), pp. 139-185 (ISSN: 0003-486X) | MR | Zbl | DOI

Bufetov, A. I. Limit theorems for translation flows, Ann. of Math., Volume 179 (2014), pp. 431-499 (ISSN: 0003-486X) | MR | Zbl | DOI

Calta, K. Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., Volume 17 (2004), pp. 871-908 (ISSN: 0894-0347) | MR | Zbl | DOI

Chaika, J.; Eskin, A. Every flat surface is Birkhoff generic and Osceledets generic in almost every direction (preprint arXiv:13051104 ) | MR

Conze, J.-P.; Gutkin, E. On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces, Ergodic Theory Dynam. Systems, Volume 32 (2012), pp. 491-515 (ISSN: 0143-3857) | MR | Zbl | DOI

Ehrenfest, P.; Ehrenfest, T. Begriffliche Grundlagen der statistischen Auffassung in der Mechanik, Encykl. d. Math. Wissensch. IV 2 II, Heft 6 (1912) (in German, translated in:) The conceptual foundations of the statistical approach in mechanics, 10-13 Cornell University Press, Ithaca NY, (1959) | MR

Eskin, A.; Kontsevich, M.; Zorich, A. Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn., Volume 5 (2011), pp. 319-353 (ISSN: 1930-5311) | MR | Zbl | DOI

Eskin, A.; Kontsevich, M.; Zorich, A. Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. I.H.É.S., Volume 120 (2014), pp. 207-333 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Eskin, A.; Mirzakhani, M. Invariant and stationary measures for the SL 2 ( ) action on moduli space (preprint arXiv:1302.3320 ) | MR

Eskin, A.; Mirzakhani, M.; Mohamadi, M. Isolation, Equidistribution, and Orbit Closures for the SL 2 ( ) action on moduli space (preprint arXiv:1305.3015 ) | MR

Forni, G.; Matheus, C.; Zorich, A. Square-tiled cyclic covers, J. Mod. Dyn., Volume 5 (2011), pp. 285-318 (ISSN: 1930-5311) | MR | Zbl | DOI

Forni, G. Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math., Volume 155 (2002), pp. 1-103 (ISSN: 0003-486X) | MR | Zbl | DOI

Hooper, W. P.; Hubert, P.; Weiss, B. Dynamics on the infinite stair case surface (preprint arXiv:0905.3736, to appear in Dis. Cont. Dyn ) | MR | Zbl

Hubert, P.; Lelièvre, S.; Troubetzkoy, S. The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion, J. reine angew. Math., Volume 656 (2011), pp. 223-244 (ISSN: 0075-4102) | MR | Zbl | DOI

Hubert, P.; Schmithüsen, G. Infinite translation surfaces with infinitely generated Veech groups, J. Mod. Dyn., Volume 4 (2010), pp. 715-732 (ISSN: 1930-5311) | MR | Zbl | DOI

Hooper, W. P.; Weiss, B. Generalized staircases: recurrence and symmetry, Ann. Inst. Fourier (Grenoble), Volume 62 (2012), pp. 1581-1600 http://aif.cedram.org/... (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI

Hardy, J.; Weber, J. Diffusion in a periodic wind-tree model, J. Math. Phys., Volume 21 (1980), pp. 1802-1808 (ISSN: 0022-2488) | DOI | MR

Keane, M. Interval exchange transformations, Math. Z., Volume 141 (1975), pp. 25-31 (ISSN: 0025-5874) | MR | Zbl | DOI

Kontsevich, M.; Zorich, A. Lyapunov exponents and Hodge theory (preprint arXiv:hep-th/9701164 ) | MR | Zbl

Kontsevich, M.; Zorich, A. Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003), pp. 631-678 (ISSN: 0020-9910) | MR | Zbl | DOI

Lelièvre, S.; Silhol, R. Multi-geodesic tessellations, fractional Dehn twists and uniformization (preprint arXiv:math/0702374 )

Masur, H. Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200 (ISSN: 0003-486X) | MR | Zbl | DOI

McMullen, C. T. Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., Volume 16 (2003), pp. 857-885 (ISSN: 0894-0347) | MR | Zbl | DOI

McMullen, C. T. Teichmüller curves in genus two: discriminant and spin, Math. Ann., Volume 333 (2005), pp. 87-130 (ISSN: 0025-5831) | MR | Zbl | DOI

McMullen, C. T. Dynamics of SL 2() over moduli space in genus two, Ann. of Math., Volume 165 (2007), pp. 397-456 (ISSN: 0003-486X) | MR | Zbl | DOI

Przytycki, P.; Schmithüsen, G.; Valdez, F. Veech groups of Loch Ness monsters, Ann. Inst. Fourier (Grenoble), Volume 61 (2011), pp. 673-687 (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI

Schmithüesen, G. Examples of origamis, The Geometry of Riemann Surfaces and Abelian Varieties (Contemp. Math.), Volume 397 (2006), pp. 193-206 | MR | Zbl | DOI

Tabachnikov, S., Panor. Synth., 1, Soc. Math., France, 1995 | MR | Zbl

Valdez, F. Veech groups, irrational billiards and stable abelian differentials, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 1055-1063 (ISSN: 1078-0947) | MR | Zbl | DOI

Veech, W. A. Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982), pp. 201-242 (ISSN: 0003-486X) | MR | Zbl | DOI

Viana, M. Dynamics of interval exchange maps and Teichmüller flows (preprint http://w3.impa.br/~viana/out/ietf.pdf )

Yoccoz, J.-C., Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 401-435 | MR | Zbl | DOI

Zorich, A., Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437-583 | MR | Zbl | DOI

Zorich, A. Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble), Volume 46 (1996), pp. 325-370 (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI

Zorich, A. Deviation for interval exchange transformations, Ergodic Theory Dynam. Systems, Volume 17 (1997), pp. 1477-1499 (ISSN: 0143-3857) | MR | Zbl | DOI

Zorich, A., Pseudoperiodic topology (Amer. Math. Soc. Transl. Ser. 2), Volume 197, Amer. Math. Soc., Providence, RI, 1999, pp. 135-178 | MR | Zbl

Cité par Sources :