Voir la notice de l'article provenant de la source Numdam
For a real or complex one-dimensional map satisfying a weak hyperbolicity assumption, we study the existence and statistical properties of physical measures, with respect to geometric reference measures. We also study geometric properties of these measures.
Nous étudions l'existence et des propriétés statistiques des mesures physiques d'une application unidimensionnelle réelle ou complexe satisfaisant une hypothèse d'hyperbolicité faible, par rapport à une mesure de référence géométrique. Nous étudions aussi des propriétés géométriques de ces mesures.
@article{ASENS_2014__47_6_1027_0, author = {Rivera-Letelier, Juan and Shen, Weixiao}, title = {Statistical properties of one-dimensional maps under weak hyperbolicity assumptions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1027--1083}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {6}, year = {2014}, doi = {10.24033/asens.2233}, mrnumber = {3297154}, zbl = {1351.37195}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2233/} }
TY - JOUR AU - Rivera-Letelier, Juan AU - Shen, Weixiao TI - Statistical properties of one-dimensional maps under weak hyperbolicity assumptions JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 1027 EP - 1083 VL - 47 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2233/ DO - 10.24033/asens.2233 LA - en ID - ASENS_2014__47_6_1027_0 ER -
%0 Journal Article %A Rivera-Letelier, Juan %A Shen, Weixiao %T Statistical properties of one-dimensional maps under weak hyperbolicity assumptions %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 1027-1083 %V 47 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2233/ %R 10.24033/asens.2233 %G en %F ASENS_2014__47_6_1027_0
Rivera-Letelier, Juan; Shen, Weixiao. Statistical properties of one-dimensional maps under weak hyperbolicity assumptions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 6, pp. 1027-1083. doi : 10.24033/asens.2233. http://geodesic.mathdoc.fr/articles/10.24033/asens.2233/
Hausdorff dimension and conformal measures of Feigenbaum Julia sets, J. Amer. Math. Soc., Volume 21 (2008), pp. 305-363 (ISSN: 0894-0347) | MR | Zbl | DOI
On iterations of on , Ann. of Math., Volume 122 (1985), pp. 1-25 (ISSN: 0003-486X) | MR | Zbl | DOI
, Encyclopaedia of Math. Sciences, 102, Springer, Berlin, 2005, 384 pages (ISBN: 3-540-22066-6) | MR | Zbl
Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup., Volume 36 (2003), pp. 621-646 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI
, Lecture Notes in Math., 470, Springer, Berlin-New York, 1975, 108 pages | MR | Zbl
Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math., Volume 172 (2008), pp. 509-533 (ISSN: 0020-9910) | MR | Zbl | DOI
Invariant measures exist without a growth condition, Comm. Math. Phys., Volume 241 (2003), pp. 287-306 (ISSN: 0010-3616) | MR | Zbl | DOI
, Progress in Physics, 1, Birkhäuser, 1980, 248 pages (ISBN: 3-7643-3026-0) | MR | Zbl
Conformal measures for rational functions revisited, Fund. Math., Volume 157 (1998), pp. 161-173 (ISSN: 0016-2736) | MR | Zbl | DOI
, Ergebn. Math. Grenzg., 25, Springer, Berlin, 1993, 605 pages (ISBN: 3-540-56412-8) | MR | Zbl | DOI
Pesin theory and equilibrium measures on the interval (preprint arXiv:1304.3305 ) | MR
Hyperbolic dimension for interval maps, Nonlinearity, Volume 19 (2006), pp. 2877-2894 (ISSN: 0951-7715) | MR | Zbl | DOI
Measures with positive Lyapunov exponent and conformal measures in rational dynamics, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 2803-2824 (ISSN: 0002-9947) | MR | Zbl | DOI
, John Wiley & Sons, Ltd., Chichester, 1990, 288 pages (ISBN: 0-471-92287-0) |Berry-Esseen theorem and local limit theorem for non uniformly expanding maps, Ann. Inst. H. Poincaré Probab. Statist., Volume 41 (2005), pp. 997-1024 (ISSN: 0246-0203) | MR | Zbl | mathdoc-id | DOI
Non-uniform hyperbolicity in complex dynamics, Invent. Math., Volume 175 (2009), pp. 335-415 (ISSN: 0020-9910) | MR | Zbl | DOI
Collet, Eckmann and Hölder, Invent. Math., Volume 133 (1998), pp. 69-96 (ISSN: 0020-9910) | MR | Zbl | DOI
, Annals of Math. Studies, 144, Princeton Univ. Press, Princeton, NJ, 1998, 149 pages (ISBN: 0-691-00257-6; 0-691-00258-4) | MR | Zbl
Rigidity and expansion for rational maps, J. London Math. Soc., Volume 63 (2001), pp. 128-140 (ISSN: 0024-6107) | MR | Zbl | DOI
, Cambridge Univ. Press, 1952, 324 pages |, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991) (Princeton Math. Ser.), Volume 42, Princeton Univ. Press, Princeton, NJ, 1995, pp. 250-267 | MR | Zbl | DOI
Removability theorems for Sobolev functions and quasiconformal maps, Ark. Mat., Volume 38 (2000), pp. 263-279 (ISSN: 0004-2080) | MR | Zbl | DOI
Holomorphic removability of julia sets (preprint arXiv:math/9812164 )
Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys., Volume 149 (1992), pp. 31-69 http://projecteuclid.org/euclid.cmp/1104251138 (ISSN: 0010-3616) | MR | Zbl | DOI
Fibonacci maps re(al) visited, Ergodic Theory Dynam. Systems, Volume 15 (1995), pp. 99-120 (ISSN: 0143-3857) | MR | Zbl | DOI
Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc., Volume 99 (2009), pp. 275-296 (ISSN: 0024-6115) | MR | Zbl | DOI
Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems, Volume 1 (1981), pp. 77-93 (ISSN: 0143-3857) | MR | Zbl | DOI
Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris Sér. I Math., Volume 299 (1984), pp. 37-40 (ISSN: 0249-6291) | MR | Zbl
The Fibonacci unimodal map, J. Amer. Math. Soc., Volume 6 (1993), pp. 425-457 (ISSN: 0894-0347) | MR | Zbl | DOI
Dimensions of the Julia sets of rational maps with the backward contraction property, Fund. Math., Volume 198 (2008), pp. 165-176 (ISSN: 0016-2736) | MR | Zbl | DOI
On non-uniform hyperbolicity assumptions in one-dimensional dynamics, Sci. China Math., Volume 53 (2010), pp. 1663-1677 (ISSN: 1674-7283) | MR | Zbl | DOI
Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., Volume 100 (1985), pp. 495-524 http://projecteuclid.org/euclid.cmp/1104114003 (ISSN: 0010-3616) | MR | Zbl | DOI
Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv., Volume 75 (2000), pp. 535-593 (ISSN: 0010-2571) | MR | Zbl | DOI
, Annals of Math. Studies, 135, Princeton Univ. Press, Princeton, NJ, 1994, 214 pages (ISBN: 0-691-02982-2; 0-691-02981-4) | MR | Zbl
Julia and John revisited, Fund. Math., Volume 215 (2011), pp. 67-86 (ISSN: 0016-2736) | MR | Zbl | DOI
, The Mandelbrot set, theme and variations (London Math. Soc. Lecture Note Ser.), Volume 274, Cambridge Univ. Press, Cambridge, 2000, pp. 67-116 | MR | Zbl | DOI
, Annals of Math. Studies, 160, Princeton Univ. Press, Princeton, NJ, 2006, 304 pages (ISBN: 978-0-691-12488-9; 0-691-12488-4) | MR | Zbl
Absolutely continuous measures for certain maps of an interval, Publ. Math. I.H.É.S., Volume 53 (1981), pp. 17-51 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI
Almost sure invariance principle for nonuniformly hyperbolic systems, Comm. Math. Phys., Volume 260 (2005), pp. 131-146 (ISSN: 0010-3616) | MR | Zbl | DOI
Large deviations for nonuniformly hyperbolic systems, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 6661-6676 (ISSN: 0002-9947) | MR | Zbl | DOI
, Cambridge Tracts in Mathematics, 148, Cambridge Univ. Press, Cambridge, 2003, 281 pages (ISBN: 0-521-82538-5) | MR | Zbl | DOI
Topological invariance of the Collet-Eckmann property for -unimodal maps, Fund. Math., Volume 155 (1998), pp. 33-43 (ISSN: 0016-2736) | MR | Zbl | DOI
Invariant measures exist under a summability condition for unimodal maps, Invent. Math., Volume 105 (1991), pp. 123-136 (ISSN: 0020-9910) | MR | Zbl | DOI
Porosity of Collet-Eckmann Julia sets, Fund. Math., Volume 155 (1998), pp. 189-199 (ISSN: 0016-2736) | MR | Zbl | DOI
Statistical properties of topological Collet-Eckmann maps, Ann. Sci. École Norm. Sup., Volume 40 (2007), pp. 135-178 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI
Nice inducing schemes and the thermodynamics of rational maps, Comm. Math. Phys., Volume 301 (2011), pp. 661-707 (ISSN: 0010-3616) | MR | Zbl | DOI
Hölder implies Collet-Eckmann, Astérisque, Volume 261 (2000), pp. 385-403 (ISSN: 0303-1179) | MR | mathdoc-id | Zbl
Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures. Appendix: on non-renormalizable quadratic polynomials, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 717-742 (ISSN: 0002-9947) | MR | Zbl | DOI
Proof of the Branner-Hubbard conjecture on Cantor Julia sets, Sci. China Ser. A, Volume 52 (2009), pp. 45-65 (ISSN: 1006-9283) | MR | Zbl | DOI
A connecting lemma for rational maps satisfying a no-growth condition, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 595-636 (ISSN: 0143-3857) | MR | Zbl | DOI
A measure associated with axiom-A attractors, Amer. J. Math., Volume 98 (1976), pp. 619-654 (ISSN: 0002-9327) | MR | Zbl | DOI
Dimension of weakly expanding points for quadratic maps, Bull. Soc. Math. France, Volume 131 (2003), pp. 399-420 (ISSN: 0037-9484) | MR | Zbl | mathdoc-id | DOI
Gibbs measures in ergodic theory, Uspehi Mat. Nauk, Volume 27 (1972), pp. 21-64 (ISSN: 0042-1316) | MR | Zbl
, Geometric dynamics (Rio de Janeiro, 1981) (Lecture Notes in Math.), Volume 1007, Springer, Berlin, 1983, pp. 725-752 | MR | Zbl | DOI
An invariance principle for maps with polynomial decay of correlations, Comm. Math. Phys., Volume 260 (2005), pp. 1-15 (ISSN: 0010-3616) | MR | Zbl | DOI
Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc., Volume 17 (2004), pp. 749-782 (electronic) (ISSN: 0894-0347) | MR | Zbl | DOI
Decay of correlations for certain quadratic maps, Comm. Math. Phys., Volume 146 (1992), pp. 123-138 http://projecteuclid.org/euclid.cmp/1104249979 (ISSN: 0010-3616) | MR | Zbl | DOI
Recurrence times and rates of mixing, Israel J. Math., Volume 110 (1999), pp. 153-188 (ISSN: 0021-2172) | MR | Zbl | DOI
Cité par Sources :