Statistical properties of one-dimensional maps under weak hyperbolicity assumptions
[Propriétés statistiques des applications unidimensionnelles sous des hypothèses d'hyperbolicité faibles]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 6, pp. 1027-1083.

Voir la notice de l'article provenant de la source Numdam

For a real or complex one-dimensional map satisfying a weak hyperbolicity assumption, we study the existence and statistical properties of physical measures, with respect to geometric reference measures. We also study geometric properties of these measures.

Nous étudions l'existence et des propriétés statistiques des mesures physiques d'une application unidimensionnelle réelle ou complexe satisfaisant une hypothèse d'hyperbolicité faible, par rapport à une mesure de référence géométrique. Nous étudions aussi des propriétés géométriques de ces mesures.

Publié le :
DOI : 10.24033/asens.2233
Classification : 37E05, 37C40, 37F35.
Keywords: Physical measures, mixing rates.
Mots-clés : Mesures physiques, vitesse de mélange.
@article{ASENS_2014__47_6_1027_0,
     author = {Rivera-Letelier, Juan and Shen, Weixiao},
     title = {Statistical properties  of one-dimensional maps  under weak hyperbolicity assumptions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1027--1083},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {6},
     year = {2014},
     doi = {10.24033/asens.2233},
     mrnumber = {3297154},
     zbl = {1351.37195},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2233/}
}
TY  - JOUR
AU  - Rivera-Letelier, Juan
AU  - Shen, Weixiao
TI  - Statistical properties  of one-dimensional maps  under weak hyperbolicity assumptions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 1027
EP  - 1083
VL  - 47
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2233/
DO  - 10.24033/asens.2233
LA  - en
ID  - ASENS_2014__47_6_1027_0
ER  - 
%0 Journal Article
%A Rivera-Letelier, Juan
%A Shen, Weixiao
%T Statistical properties  of one-dimensional maps  under weak hyperbolicity assumptions
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 1027-1083
%V 47
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2233/
%R 10.24033/asens.2233
%G en
%F ASENS_2014__47_6_1027_0
Rivera-Letelier, Juan; Shen, Weixiao. Statistical properties  of one-dimensional maps  under weak hyperbolicity assumptions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 6, pp. 1027-1083. doi : 10.24033/asens.2233. http://geodesic.mathdoc.fr/articles/10.24033/asens.2233/

Avila, A.; Lyubich, M. Hausdorff dimension and conformal measures of Feigenbaum Julia sets, J. Amer. Math. Soc., Volume 21 (2008), pp. 305-363 (ISSN: 0894-0347) | MR | Zbl | DOI

Benedicks, M.; Carleson, L. On iterations of 1-ax2 on (-1,1) , Ann. of Math., Volume 122 (1985), pp. 1-25 (ISSN: 0003-486X) | MR | Zbl | DOI

Bonatti, C.; Díaz, L. J.; Viana, M., Encyclopaedia of Math. Sciences, 102, Springer, Berlin, 2005, 384 pages (ISBN: 3-540-22066-6) | MR | Zbl

Bruin, H.; Luzzatto, S.; Van Strien, S. Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup., Volume 36 (2003), pp. 621-646 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

Bowen, R., Lecture Notes in Math., 470, Springer, Berlin-New York, 1975, 108 pages | MR | Zbl

Bruin, H.; Rivera-Letelier, J.; Shen, W.; van Strien, S. Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math., Volume 172 (2008), pp. 509-533 (ISSN: 0020-9910) | MR | Zbl | DOI

Bruin, H.; Shen, W.; van Strien, S. Invariant measures exist without a growth condition, Comm. Math. Phys., Volume 241 (2003), pp. 287-306 (ISSN: 0010-3616) | MR | Zbl | DOI

Collet, P.; Eckmann, J.-P., Progress in Physics, 1, Birkhäuser, 1980, 248 pages (ISBN: 3-7643-3026-0) | MR | Zbl

Denker, M.; Mauldin, R. D.; Nitecki, Z.; Urbański, M. Conformal measures for rational functions revisited, Fund. Math., Volume 157 (1998), pp. 161-173 (ISSN: 0016-2736) | MR | Zbl | DOI

de Melo, W.; van Strien, S., Ergebn. Math. Grenzg., 25, Springer, Berlin, 1993, 605 pages (ISBN: 3-540-56412-8) | MR | Zbl | DOI

Dobbs, N. Pesin theory and equilibrium measures on the interval (preprint arXiv:1304.3305 ) | MR

Dobbs, N. Hyperbolic dimension for interval maps, Nonlinearity, Volume 19 (2006), pp. 2877-2894 (ISSN: 0951-7715) | MR | Zbl | DOI

Dobbs, N. Measures with positive Lyapunov exponent and conformal measures in rational dynamics, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 2803-2824 (ISSN: 0002-9947) | MR | Zbl | DOI

Falconer, K., John Wiley & Sons, Ltd., Chichester, 1990, 288 pages (ISBN: 0-471-92287-0) | MR | Zbl

Gouëzel, S. Berry-Esseen theorem and local limit theorem for non uniformly expanding maps, Ann. Inst. H. Poincaré Probab. Statist., Volume 41 (2005), pp. 997-1024 (ISSN: 0246-0203) | MR | Zbl | mathdoc-id | DOI

Graczyk, J.; Smirnov, S. K. Non-uniform hyperbolicity in complex dynamics, Invent. Math., Volume 175 (2009), pp. 335-415 (ISSN: 0020-9910) | MR | Zbl | DOI

Graczyk, J.; Smirnov, S. K. Collet, Eckmann and Hölder, Invent. Math., Volume 133 (1998), pp. 69-96 (ISSN: 0020-9910) | MR | Zbl | DOI

Graczyk, J.; Świątek, G., Annals of Math. Studies, 144, Princeton Univ. Press, Princeton, NJ, 1998, 149 pages (ISBN: 0-691-00257-6; 0-691-00258-4) | MR | Zbl

Haïssinsky, P. Rigidity and expansion for rational maps, J. London Math. Soc., Volume 63 (2001), pp. 128-140 (ISSN: 0024-6107) | MR | Zbl | DOI

Hardy, G. H.; Littlewood, J. E.; Pólya, G., Cambridge Univ. Press, 1952, 324 pages | MR | Zbl

Jones, P. W., Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991) (Princeton Math. Ser.), Volume 42, Princeton Univ. Press, Princeton, NJ, 1995, pp. 250-267 | MR | Zbl | DOI

Jones, P. W.; Smirnov, S. K. Removability theorems for Sobolev functions and quasiconformal maps, Ark. Mat., Volume 38 (2000), pp. 263-279 (ISSN: 0004-2080) | MR | Zbl | DOI

Kahn, J. Holomorphic removability of julia sets (preprint arXiv:math/9812164 )

Keller, G.; Nowicki, T. Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys., Volume 149 (1992), pp. 31-69 http://projecteuclid.org/euclid.cmp/1104251138 (ISSN: 0010-3616) | MR | Zbl | DOI

Keller, G.; Nowicki, T. Fibonacci maps re(al) visited, Ergodic Theory Dynam. Systems, Volume 15 (1995), pp. 99-120 (ISSN: 0143-3857) | MR | Zbl | DOI

Kozlovski, O.; van Strien, S. Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc., Volume 99 (2009), pp. 275-296 (ISSN: 0024-6115) | MR | Zbl | DOI

Ledrappier, F. Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems, Volume 1 (1981), pp. 77-93 (ISSN: 0143-3857) | MR | Zbl | DOI

Ledrappier, F. Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris Sér. I Math., Volume 299 (1984), pp. 37-40 (ISSN: 0249-6291) | MR | Zbl

Lyubich, M.; Milnor, J. The Fibonacci unimodal map, J. Amer. Math. Soc., Volume 6 (1993), pp. 425-457 (ISSN: 0894-0347) | MR | Zbl | DOI

Li, H.; Shen, W. Dimensions of the Julia sets of rational maps with the backward contraction property, Fund. Math., Volume 198 (2008), pp. 165-176 (ISSN: 0016-2736) | MR | Zbl | DOI

Li, H.; Shen, W. On non-uniform hyperbolicity assumptions in one-dimensional dynamics, Sci. China Math., Volume 53 (2010), pp. 1663-1677 (ISSN: 1674-7283) | MR | Zbl | DOI

Mañé, R. Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., Volume 100 (1985), pp. 495-524 http://projecteuclid.org/euclid.cmp/1104114003 (ISSN: 0010-3616) | MR | Zbl | DOI

McMullen, C. T. Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv., Volume 75 (2000), pp. 535-593 (ISSN: 0010-2571) | MR | Zbl | DOI

McMullen, C. T., Annals of Math. Studies, 135, Princeton Univ. Press, Princeton, NJ, 1994, 214 pages (ISBN: 0-691-02982-2; 0-691-02981-4) | MR | Zbl

Mihalache, N. Julia and John revisited, Fund. Math., Volume 215 (2011), pp. 67-86 (ISSN: 0016-2736) | MR | Zbl | DOI

Milnor, J., The Mandelbrot set, theme and variations (London Math. Soc. Lecture Note Ser.), Volume 274, Cambridge Univ. Press, Cambridge, 2000, pp. 67-116 | MR | Zbl | DOI

Milnor, J., Annals of Math. Studies, 160, Princeton Univ. Press, Princeton, NJ, 2006, 304 pages (ISBN: 978-0-691-12488-9; 0-691-12488-4) | MR | Zbl

Misiurewicz, M. Absolutely continuous measures for certain maps of an interval, Publ. Math. I.H.É.S., Volume 53 (1981), pp. 17-51 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Melbourne, I.; Nicol, M. Almost sure invariance principle for nonuniformly hyperbolic systems, Comm. Math. Phys., Volume 260 (2005), pp. 131-146 (ISSN: 0010-3616) | MR | Zbl | DOI

Melbourne, I.; Nicol, M. Large deviations for nonuniformly hyperbolic systems, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 6661-6676 (ISSN: 0002-9947) | MR | Zbl | DOI

Mauldin, R. D.; Urbański, M., Cambridge Tracts in Mathematics, 148, Cambridge Univ. Press, Cambridge, 2003, 281 pages (ISBN: 0-521-82538-5) | MR | Zbl | DOI

Nowicki, T.; Przytycki, F. Topological invariance of the Collet-Eckmann property for S-unimodal maps, Fund. Math., Volume 155 (1998), pp. 33-43 (ISSN: 0016-2736) | MR | Zbl | DOI

Nowicki, T.; van Strien, S. Invariant measures exist under a summability condition for unimodal maps, Invent. Math., Volume 105 (1991), pp. 123-136 (ISSN: 0020-9910) | MR | Zbl | DOI

Przytycki, F.; Rohde, S. Porosity of Collet-Eckmann Julia sets, Fund. Math., Volume 155 (1998), pp. 189-199 (ISSN: 0016-2736) | MR | Zbl | DOI

Przytycki, F.; Rivera-Letelier, J. Statistical properties of topological Collet-Eckmann maps, Ann. Sci. École Norm. Sup., Volume 40 (2007), pp. 135-178 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

Przytycki, F.; Rivera-Letelier, J. Nice inducing schemes and the thermodynamics of rational maps, Comm. Math. Phys., Volume 301 (2011), pp. 661-707 (ISSN: 0010-3616) | MR | Zbl | DOI

Przytycki, F. Hölder implies Collet-Eckmann, Astérisque, Volume 261 (2000), pp. 385-403 (ISSN: 0303-1179) | MR | mathdoc-id | Zbl

Przytycki, F. Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures. Appendix: on non-renormalizable quadratic polynomials, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 717-742 (ISSN: 0002-9947) | MR | Zbl | DOI

Qiu, W.; Yin, Y. Proof of the Branner-Hubbard conjecture on Cantor Julia sets, Sci. China Ser. A, Volume 52 (2009), pp. 45-65 (ISSN: 1006-9283) | MR | Zbl | DOI

Rivera-Letelier, J. A connecting lemma for rational maps satisfying a no-growth condition, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 595-636 (ISSN: 0143-3857) | MR | Zbl | DOI

Ruelle, D. A measure associated with axiom-A attractors, Amer. J. Math., Volume 98 (1976), pp. 619-654 (ISSN: 0002-9327) | MR | Zbl | DOI

Senti, S. Dimension of weakly expanding points for quadratic maps, Bull. Soc. Math. France, Volume 131 (2003), pp. 399-420 (ISSN: 0037-9484) | MR | Zbl | mathdoc-id | DOI

Sinaĭ, J. G. Gibbs measures in ergodic theory, Uspehi Mat. Nauk, Volume 27 (1972), pp. 21-64 (ISSN: 0042-1316) | MR | Zbl

Sullivan, D., Geometric dynamics (Rio de Janeiro, 1981) (Lecture Notes in Math.), Volume 1007, Springer, Berlin, 1983, pp. 725-752 | MR | Zbl | DOI

Tyran-Kamińska, M. An invariance principle for maps with polynomial decay of correlations, Comm. Math. Phys., Volume 260 (2005), pp. 1-15 (ISSN: 0010-3616) | MR | Zbl | DOI

van Strien, S.; Vargas, E. Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc., Volume 17 (2004), pp. 749-782 (electronic) (ISSN: 0894-0347) | MR | Zbl | DOI

Young, L.-S. Decay of correlations for certain quadratic maps, Comm. Math. Phys., Volume 146 (1992), pp. 123-138 http://projecteuclid.org/euclid.cmp/1104249979 (ISSN: 0010-3616) | MR | Zbl | DOI

Young, L.-S. Recurrence times and rates of mixing, Israel J. Math., Volume 110 (1999), pp. 153-188 (ISSN: 0021-2172) | MR | Zbl | DOI

Cité par Sources :