Diagonal cycles and Euler systems I: A p-adic Gross-Zagier formula
[Cycles de Gross-Schoen et systèmes d'Euler I : une formule de Gross-Zagier p-adique]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 4, pp. 779-832.

Voir la notice de l'article provenant de la source Numdam

This article is the first in a series devoted to studying generalised Gross-Kudla-Schoen diagonal cycles in the product of three Kuga-Sato varieties and the Euler system properties of the associated Selmer classes, with special emphasis on their application to the Birch-Swinnerton-Dyer conjecture and the theory of Stark-Heegner points. The basis for the entire study is a p-adic formula of Gross-Zagier type which relates the images of these diagonal cycles under the p-adic Abel-Jacobi map to special values of certain p-adic L-functions attached to the Garrett-Rankin triple convolution of three Hida families of modular forms. The main goal of this article is to describe and prove this formula.

Cet article est le premier d'une série consacrée aux cycles de Gross-Kudla-Schoen généralisés appartenant aux groupes de Chow de produits de trois variétés de Kuga-Sato, et aux systèmes d'Euler qui leur sont associés. La série au complet repose sur une variante p-adique de la formule de Gross-Zagier qui relie l'image des cycles de Gross-Kudla-Schoen par l'application d'Abel-Jacobi p-adique aux valeurs spéciales de certaines fonctions L p-adiques attachées à la convolution de Garrett-Rankin de trois familles de Hida de formes modulaires cuspidales. L'objectif principal de cet article est de décrire et de démontrer cette variante.

Publié le :
DOI : 10.24033/asens.2227
Classification : 11F12, 11G05, 11G35, 11G40
Keywords: Gross-Kudla-Schoen cycle, Garrett-Rankin $p$-adic $L$-function, $p$-adic Abel-Jacobi map, Chow group, Coleman integration.
Mots-clés : Cycle de Gross-Kudla-Schoen, fonction $L$ $p$-adique de Garrett-Rankin, application d'Abel-Jacobi $p$-adique, groupe de Chow, intégration de Coleman.
@article{ASENS_2014__47_4_779_0,
     author = {Darmon, Henri and Rotger, Victor},
     title = {Diagonal cycles and {Euler} systems {I:}   {A} $p$-adic {Gross-Zagier} formula},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {779--832},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {4},
     year = {2014},
     doi = {10.24033/asens.2227},
     mrnumber = {3250064},
     zbl = {1356.11039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2227/}
}
TY  - JOUR
AU  - Darmon, Henri
AU  - Rotger, Victor
TI  - Diagonal cycles and Euler systems I:   A $p$-adic Gross-Zagier formula
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 779
EP  - 832
VL  - 47
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2227/
DO  - 10.24033/asens.2227
LA  - en
ID  - ASENS_2014__47_4_779_0
ER  - 
%0 Journal Article
%A Darmon, Henri
%A Rotger, Victor
%T Diagonal cycles and Euler systems I:   A $p$-adic Gross-Zagier formula
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 779-832
%V 47
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2227/
%R 10.24033/asens.2227
%G en
%F ASENS_2014__47_4_779_0
Darmon, Henri; Rotger, Victor. Diagonal cycles and Euler systems I:   A $p$-adic Gross-Zagier formula. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 4, pp. 779-832. doi : 10.24033/asens.2227. http://geodesic.mathdoc.fr/articles/10.24033/asens.2227/

Bertolini, M.; Darmon, H. Kato's Euler system and rational points on elliptic curves I: A p -adic Beilinson formula (to appear in Israel J. of Math ) | MR | Zbl

Bertolini, M.; Darmon, H.; Prasanna, K. Generalized Heegner cycles and p-adic Rankin L-series, Duke Math. J., Volume 162 (2013), pp. 1033-1148 (ISSN: 0012-7094) | MR | Zbl | DOI

Bertolini, M.; Darmon, H.; Rotger, V. Beilinson-Flach elements and Euler Systems I: syntomic regulators and p -adic Rankin L-series (2012) (preprint http://www.math.mcgill.ca/darmon/pub/Articles/Research/58.BDR-Flach1/paper.pdf ) | MR

Besser, A. A generalization of Coleman's p-adic integration theory, Invent. Math., Volume 142 (2000), pp. 397-434 (ISSN: 0020-9910) | MR | Zbl | DOI

Böcherer, S.; Panchishkin, A. A. Admissible p-adic measures attached to triple products of elliptic cusp forms, Doc. Math., Volume Extra Vol. (2006), pp. 77-132 (ISSN: 1431-0635) | MR | Zbl

Brasca, R. p-adic modular forms of non-integral weight over Shimura curves, Compos. Math., Volume 149 (2013), pp. 32-62 (ISSN: 0010-437X) | MR | Zbl | DOI

Coleman, R. F.; Gouvêa, F. Q.; Jochnowitz, N. E2, Θ, and overconvergence, Int. Math. Res. Not., Volume 1995 (1995), pp. 23-41 (ISSN: 1073-7928) | MR | Zbl | DOI

Coleman, R. F., p -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) (Contemp. Math.), Volume 165, Amer. Math. Soc., Providence, RI, 1994, pp. 21-51 | MR | Zbl | DOI

Coleman, R. F. Classical and overconvergent modular forms, J. Théor. Nombres Bordeaux, Volume 7 (1995), pp. 333-365 http://jtnb.cedram.org/... (ISSN: 1246-7405) | MR | Zbl | mathdoc-id | DOI

Daub, M. Algebraic properties and effective computations of Chow-Heegner points (2014)

Darmon, H.; Daub, M.; Lichtenstein, S.; Rotger, V. Algorithms for Chow-Heegner points via iterated integrals (with an appendix by W. Stein) (to appear in Math. of Computation ) | MR

Dimitrov, M.; Nyssen, L. Test vectors for trilinear forms when at least one representation is not supercuspidal, Manuscripta Math., Volume 133 (2010), pp. 479-504 (ISSN: 0025-2611) | MR | Zbl | DOI

Darmon, H.; Rotger, V. Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L -functions (submitted) | MR

Darmon, H.; Rotger, V.; Sols, I. Iterated integrals, diagonal cycles and rational points on elliptic curves, Publ. Math. Besançon Algèbre Théorie Nombres, Volume 2 (2012), pp. 19-46 | MR | Zbl | mathdoc-id

Gross, B. H.; Kudla, S. S. Heights and the central critical values of triple product L-functions, Compositio Math., Volume 81 (1992), pp. 143-209 (ISSN: 0010-437X) | MR | Zbl | mathdoc-id

Gross, B. H.; Prasad, D. Test vectors for linear forms, Math. Ann., Volume 291 (1991), pp. 343-355 (ISSN: 0025-5831) | MR | Zbl | DOI

Gross, B. H.; Schoen, C. The modified diagonal cycle on the triple product of a pointed curve, Ann. Inst. Fourier (Grenoble), Volume 45 (1995), pp. 649-679 (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI

Hida, H. Galois representations into GL 2(𝐙p[[X]]) attached to ordinary cusp forms, Invent. Math., Volume 85 (1986), pp. 545-613 (ISSN: 0020-9910) | MR | Zbl | DOI

Hida, H. Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup., Volume 19 (1986), pp. 231-273 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

Hida, H. A p-adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier (Grenoble), Volume 38 (1988), pp. 1-83 (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI

Hida, H., London Mathematical Society Student Texts, 26, Cambridge Univ. Press, Cambridge, 1993, 386 pages (ISBN: 0-521-43411-4; 0-521-43569-2) | MR | Zbl | DOI

Harris, M.; Kudla, S. S. The central critical value of a triple product L-function, Ann. of Math., Volume 133 (1991), pp. 605-672 (ISSN: 0003-486X) | MR | Zbl | DOI

Harris, M.; Tilouine, J. p-adic measures and square roots of special values of triple product L-functions, Math. Ann., Volume 320 (2001), pp. 127-147 (ISSN: 0025-5831) | MR | Zbl | DOI

Ichino, A. Trilinear forms and the central values of triple product L-functions, Duke Math. J., Volume 145 (2008), pp. 281-307 (ISSN: 0012-7094) | MR | Zbl | DOI

Kassaei, P. p -adic modular forms over Shimura curves over (1999) | MR

Katz, N. M., Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Math.), Volume 350, Springer, Berlin, 1973, pp. 69-190 | MR | Zbl

Lauder, A. G. B. Efficient computation of p -adic Rankin L -functions to appear in Boeckle, G. and Wiese, G. (eds.) Computation with modular forms, Springer | MR | Zbl

Lauder, A. G. B. Computations with classical and p-adic modular forms, LMS J. Comput. Math., Volume 14 (2011), pp. 214-231 (ISSN: 1461-1570) | MR | Zbl | DOI

Nekovář, J., The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) (CRM Proc. Lecture Notes), Volume 24, Amer. Math. Soc., Providence, RI, 2000, pp. 367-379 | MR | Zbl

Nekovář, J. On the p-adic height of Heegner cycles, Math. Ann., Volume 302 (1995), pp. 609-686 (ISSN: 0025-5831) | MR | Zbl | DOI

Panchishkin, A. A., Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc., Providence, RI, 1994, pp. 251-292 | MR | Zbl

Perrin-Riou, B. Points de Heegner et dérivées de fonctions L p-adiques, Invent. Math., Volume 89 (1987), pp. 455-510 (ISSN: 0020-9910) | MR | Zbl | DOI

Prasad, D. Trilinear forms for representations of GL (2) and local ϵ-factors, Compositio Math., Volume 75 (1990), pp. 1-46 (ISSN: 0010-437X) | MR | Zbl | mathdoc-id

Piatetski-Shapiro, I.; Rallis, S. Rankin triple L functions, Compositio Math., Volume 64 (1987), pp. 31-115 (ISSN: 0010-437X) | MR | Zbl | mathdoc-id

Scholl, A. J. Motives for modular forms, Invent. Math., Volume 100 (1990), pp. 419-430 (ISSN: 0020-9910) | MR | Zbl | DOI

Serre, J.-P., Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) (Lecture Notes in Math.), Volume 350, Springer, Berlin, 1973, pp. 191-268 | MR | Zbl

Shimura, G. On a class of nearly holomorphic automorphic forms, Ann. of Math., Volume 123 (1986), pp. 347-406 (ISSN: 0003-486X) | MR | Zbl | DOI

Urban, E. Nearly overconvergent modular forms to appear in the Proceedings of conference IWASAWA 2012 (Heidelberg) | MR

Watson, T. C. Rankin triple products and quantum chaos, ISBN: 978-0493-52934-9, ProQuest LLC, Ann Arbor, MI (2002) http://gateway.proquest.com/... | MR

Yuan, X.; Zhang, S.; Zhang, W. Triple product L-series and Gross-Schoen cycles I: split case (2010) (preprint http://www.math.columbia.edu/~szhang/papers/TripleIver1-6.pdf )

Cité par Sources :