Voir la notice de l'article provenant de la source Numdam
This article is the first in a series devoted to studying generalised Gross-Kudla-Schoen diagonal cycles in the product of three Kuga-Sato varieties and the Euler system properties of the associated Selmer classes, with special emphasis on their application to the Birch-Swinnerton-Dyer conjecture and the theory of Stark-Heegner points. The basis for the entire study is a -adic formula of Gross-Zagier type which relates the images of these diagonal cycles under the -adic Abel-Jacobi map to special values of certain -adic -functions attached to the Garrett-Rankin triple convolution of three Hida families of modular forms. The main goal of this article is to describe and prove this formula.
Cet article est le premier d'une série consacrée aux cycles de Gross-Kudla-Schoen généralisés appartenant aux groupes de Chow de produits de trois variétés de Kuga-Sato, et aux systèmes d'Euler qui leur sont associés. La série au complet repose sur une variante -adique de la formule de Gross-Zagier qui relie l'image des cycles de Gross-Kudla-Schoen par l'application d'Abel-Jacobi -adique aux valeurs spéciales de certaines fonctions -adiques attachées à la convolution de Garrett-Rankin de trois familles de Hida de formes modulaires cuspidales. L'objectif principal de cet article est de décrire et de démontrer cette variante.
@article{ASENS_2014__47_4_779_0, author = {Darmon, Henri and Rotger, Victor}, title = {Diagonal cycles and {Euler} systems {I:} {A} $p$-adic {Gross-Zagier} formula}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {779--832}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {4}, year = {2014}, doi = {10.24033/asens.2227}, mrnumber = {3250064}, zbl = {1356.11039}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2227/} }
TY - JOUR AU - Darmon, Henri AU - Rotger, Victor TI - Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 779 EP - 832 VL - 47 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2227/ DO - 10.24033/asens.2227 LA - en ID - ASENS_2014__47_4_779_0 ER -
%0 Journal Article %A Darmon, Henri %A Rotger, Victor %T Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 779-832 %V 47 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2227/ %R 10.24033/asens.2227 %G en %F ASENS_2014__47_4_779_0
Darmon, Henri; Rotger, Victor. Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 4, pp. 779-832. doi : 10.24033/asens.2227. http://geodesic.mathdoc.fr/articles/10.24033/asens.2227/
Kato's Euler system and rational points on elliptic curves I: A -adic Beilinson formula (to appear in Israel J. of Math ) | MR | Zbl
Generalized Heegner cycles and -adic Rankin -series, Duke Math. J., Volume 162 (2013), pp. 1033-1148 (ISSN: 0012-7094) | MR | Zbl | DOI
Beilinson-Flach elements and Euler Systems I: syntomic regulators and -adic Rankin L-series (2012) (preprint http://www.math.mcgill.ca/darmon/pub/Articles/Research/58.BDR-Flach1/paper.pdf ) | MR
A generalization of Coleman's -adic integration theory, Invent. Math., Volume 142 (2000), pp. 397-434 (ISSN: 0020-9910) | MR | Zbl | DOI
Admissible -adic measures attached to triple products of elliptic cusp forms, Doc. Math., Volume Extra Vol. (2006), pp. 77-132 (ISSN: 1431-0635) | MR | Zbl
-adic modular forms of non-integral weight over Shimura curves, Compos. Math., Volume 149 (2013), pp. 32-62 (ISSN: 0010-437X) | MR | Zbl | DOI
, , and overconvergence, Int. Math. Res. Not., Volume 1995 (1995), pp. 23-41 (ISSN: 1073-7928) | MR | Zbl | DOI
, -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) (Contemp. Math.), Volume 165, Amer. Math. Soc., Providence, RI, 1994, pp. 21-51 | MR | Zbl | DOI
Classical and overconvergent modular forms, J. Théor. Nombres Bordeaux, Volume 7 (1995), pp. 333-365 http://jtnb.cedram.org/... (ISSN: 1246-7405) | MR | Zbl | mathdoc-id | DOI
Algebraic properties and effective computations of Chow-Heegner points (2014)
Algorithms for Chow-Heegner points via iterated integrals (with an appendix by W. Stein) (to appear in Math. of Computation ) | MR
Test vectors for trilinear forms when at least one representation is not supercuspidal, Manuscripta Math., Volume 133 (2010), pp. 479-504 (ISSN: 0025-2611) | MR | Zbl | DOI
Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin -functions (submitted) | MR
Iterated integrals, diagonal cycles and rational points on elliptic curves, Publ. Math. Besançon Algèbre Théorie Nombres, Volume 2 (2012), pp. 19-46 | MR | Zbl | mathdoc-id
Heights and the central critical values of triple product -functions, Compositio Math., Volume 81 (1992), pp. 143-209 (ISSN: 0010-437X) | MR | Zbl | mathdoc-id
Test vectors for linear forms, Math. Ann., Volume 291 (1991), pp. 343-355 (ISSN: 0025-5831) | MR | Zbl | DOI
The modified diagonal cycle on the triple product of a pointed curve, Ann. Inst. Fourier (Grenoble), Volume 45 (1995), pp. 649-679 (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI
Galois representations into attached to ordinary cusp forms, Invent. Math., Volume 85 (1986), pp. 545-613 (ISSN: 0020-9910) | MR | Zbl | DOI
Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup., Volume 19 (1986), pp. 231-273 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI
A -adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier (Grenoble), Volume 38 (1988), pp. 1-83 (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI
, London Mathematical Society Student Texts, 26, Cambridge Univ. Press, Cambridge, 1993, 386 pages (ISBN: 0-521-43411-4; 0-521-43569-2) | MR | Zbl | DOI
The central critical value of a triple product -function, Ann. of Math., Volume 133 (1991), pp. 605-672 (ISSN: 0003-486X) | MR | Zbl | DOI
-adic measures and square roots of special values of triple product -functions, Math. Ann., Volume 320 (2001), pp. 127-147 (ISSN: 0025-5831) | MR | Zbl | DOI
Trilinear forms and the central values of triple product -functions, Duke Math. J., Volume 145 (2008), pp. 281-307 (ISSN: 0012-7094) | MR | Zbl | DOI
-adic modular forms over Shimura curves over (1999) | MR
, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Math.), Volume 350, Springer, Berlin, 1973, pp. 69-190 | MR | Zbl
Efficient computation of -adic Rankin -functions to appear in Boeckle, G. and Wiese, G. (eds.) Computation with modular forms, Springer | MR | Zbl
Computations with classical and -adic modular forms, LMS J. Comput. Math., Volume 14 (2011), pp. 214-231 (ISSN: 1461-1570) | MR | Zbl | DOI
, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) (CRM Proc. Lecture Notes), Volume 24, Amer. Math. Soc., Providence, RI, 2000, pp. 367-379 | MR | Zbl
On the -adic height of Heegner cycles, Math. Ann., Volume 302 (1995), pp. 609-686 (ISSN: 0025-5831) | MR | Zbl | DOI
, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc., Providence, RI, 1994, pp. 251-292 | MR | Zbl
Points de Heegner et dérivées de fonctions -adiques, Invent. Math., Volume 89 (1987), pp. 455-510 (ISSN: 0020-9910) | MR | Zbl | DOI
Trilinear forms for representations of and local -factors, Compositio Math., Volume 75 (1990), pp. 1-46 (ISSN: 0010-437X) | MR | Zbl | mathdoc-id
Rankin triple functions, Compositio Math., Volume 64 (1987), pp. 31-115 (ISSN: 0010-437X) | MR | Zbl | mathdoc-id
Motives for modular forms, Invent. Math., Volume 100 (1990), pp. 419-430 (ISSN: 0020-9910) | MR | Zbl | DOI
, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) (Lecture Notes in Math.), Volume 350, Springer, Berlin, 1973, pp. 191-268 | MR | Zbl
On a class of nearly holomorphic automorphic forms, Ann. of Math., Volume 123 (1986), pp. 347-406 (ISSN: 0003-486X) | MR | Zbl | DOI
Nearly overconvergent modular forms to appear in the Proceedings of conference IWASAWA 2012 (Heidelberg) | MR
Rankin triple products and quantum chaos, ISBN: 978-0493-52934-9, ProQuest LLC, Ann Arbor, MI (2002) http://gateway.proquest.com/... | MR
Triple product L-series and Gross-Schoen cycles I: split case (2010) (preprint http://www.math.columbia.edu/~szhang/papers/TripleIver1-6.pdf )
Cité par Sources :