Voir la notice de l'article provenant de la source Numdam
The study of the 2D Euler equation with non Lipschitzian velocity was initiated by Yudovich in [20] where a result of global well-posedness for essentially bounded vorticity is proved. A lot of works have been since dedicated to the extension of this result to more general spaces. To the best of our knowledge all these contributions lack the proof of at least one of the following three fundamental properties: global existence, uniqueness and regularity persistence. In this paper we introduce a Banach space containing unbounded functions for which all these properties are shown to be satisfied.
L'étude de l'équation d'Euler bidimensionnelle dans un cadre non lipschitzien a été initiée par Yudovich [20], qui a montré l'existence globale pour des tourbillons initiaux bornés. Depuis, de nombreux travaux ont été dédiés à l'extension de ce résultat à des espaces plus généraux. Au meilleur de notre connaissance aucun de ces travaux ne contient de résultat où les propriétés fondamentales suivantes soient vérifiées : existence globale, unicité et propagation de la régularité. Dans cet article, nous introduisons un nouvel espace de Banach contenant des fonctions non bornées et pour lequel ces trois propriétés sont vérifiées.
@article{ASENS_2014__47_3_559_0, author = {Bernicot, Fr\'ed\'eric and Keraani, Sahbi}, title = {On the global well-posedness of the {2D} {Euler} equations for a large class of {Yudovich} type data}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {559--576}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {3}, year = {2014}, doi = {10.24033/asens.2222}, mrnumber = {3239099}, zbl = {1305.76014}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2222/} }
TY - JOUR AU - Bernicot, Frédéric AU - Keraani, Sahbi TI - On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 559 EP - 576 VL - 47 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2222/ DO - 10.24033/asens.2222 LA - en ID - ASENS_2014__47_3_559_0 ER -
%0 Journal Article %A Bernicot, Frédéric %A Keraani, Sahbi %T On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 559-576 %V 47 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2222/ %R 10.24033/asens.2222 %G en %F ASENS_2014__47_3_559_0
Bernicot, Frédéric; Keraani, Sahbi. On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 3, pp. 559-576. doi : 10.24033/asens.2222. http://geodesic.mathdoc.fr/articles/10.24033/asens.2222/
, Grundl. Math. Wiss., 343, Springer, Heidelberg, 2011, 523 pages (ISBN: 978-3-642-16829-1) | MR | Zbl | DOI
Sharp constants for composition with a bi-Lipschitz measure-preserving map (preprint arXiv:1204.6008 ) | MR | Zbl
Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., Volume 94 (1984), pp. 61-66 http://projecteuclid.org/euclid.cmp/1103941230 (ISSN: 0010-3616) | MR | Zbl | DOI
Weak solutions of 2-D Euler equations with initial vorticity in , J. Differential Equations, Volume 103 (1993), pp. 323-337 (ISSN: 0022-0396) | MR | Zbl | DOI
Fluides parfaits incompressibles, Astérisque, Volume 230 (1995) transl. by I. Gallagher and D. Iftimie, Oxford Lecture Series in Mathematics and Its Applications, Vol. 14, Clarendon Press-Oxford University Press, New York (1998) (ISSN: 0303-1179) | MR | Zbl | mathdoc-id
Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., Volume 4 (1991), pp. 553-586 (ISSN: 0894-0347) | MR | Zbl | DOI
Concentrations in regularizations for 2-D incompressible flow, Comm. Pure Appl. Math., Volume 40 (1987), pp. 301-345 (ISSN: 0010-3640) | MR | Zbl | DOI
Résultats récents sur les fluides parfaits incompressibles bidimensionnels (d'après J.-Y. Chemin et J.-M. Delort), Séminaire Bourbaki, vol. 1991/92, exposé no 757, Astérisque, Volume 206 (1992), pp. 411-444 (ISSN: 0303-1179) | MR | Zbl | mathdoc-id
Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., Volume 104 (1988), pp. 223-250 (ISSN: 0003-9527) | MR | Zbl | DOI
, Pearson Education, Inc., Upper Saddle River, NJ, 2004, 931 pages (ISBN: 0-13-035399-X) |Existence of vortex sheets with reflection symmetry in two space dimensions, Arch. Ration. Mech. Anal., Volume 158 (2001), pp. 235-257 (ISSN: 0003-9527) | MR | Zbl | DOI
, Oxford Lecture Series in Mathematics and its Applications, 3, The Clarendon Press, Oxford Univ. Press, New York, 1996, 237 pages (ISBN: 0-19-851487-5) | MR | Zbl
, Graduate Studies in Math., 14, Amer. Math. Soc., Providence, RI, 1997, 278 pages (ISBN: 0-8218-0632-7) | MR | Zbl
, Cambridge Texts in Applied Mathematics, 27, Cambridge Univ. Press, Cambridge, 2002, 545 pages (ISBN: 0-521-63057-6; 0-521-63948-4) | MR | Zbl
Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl., Volume 74 (1995), pp. 95-104 (ISSN: 0021-7824) | MR | Zbl
Uniformly local estimate for 2-D vorticity equation and its application to Euler equations with initial vorticity in BMO, Comm. Math. Phys., Volume 248 (2004), pp. 169-186 (ISSN: 0010-3616) | MR | Zbl | DOI
Hydrodynamics in Besov spaces, Arch. Ration. Mech. Anal., Volume 145 (1998), pp. 197-214 (ISSN: 0003-9527) | MR | Zbl | DOI
Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. École Norm. Sup., Volume 32 (1999), pp. 769-812 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI
Nonstationary flow of an ideal incompressible liquid, USSR Comp. Math. and Math. Phys., Volume 3 (1963), pp. 1407-1456 | MR | Zbl | DOI
Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., Volume 2 (1995), pp. 27-38 (ISSN: 1073-2780) | MR | Zbl | DOI
Cité par Sources :