Voir la notice de l'article provenant de la source Numdam
We prove unique continuation principles for solutions of evolution Schrödinger equations with time dependent potentials. These correspond to uncertainly principles of Paley-Wiener type for the Fourier transform. Our results extend to a large class of semi-linear Schrödinger equations.
On prouve des principes de prolongement unique pour les solutions d'équations d'évolution de Schrödinger avec potentiels dépendant du temps. Ceux-ci correspondent à des principes d'incertitude de type Paley-Wiener pour la transformée de Fourier. Nos résultats se généralisent à une large classe d'équations de Schrödinger semi-linéaires.
@article{ASENS_2014__47_3_539_0, author = {Kenig, Carlos E. and Ponce, Gustavo and Vega, Luis}, title = {A theorem of {Paley-Wiener} type for {Schr\"odinger} evolutions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {539--557}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {3}, year = {2014}, doi = {10.24033/asens.2221}, mrnumber = {3239098}, zbl = {1308.35274}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2221/} }
TY - JOUR AU - Kenig, Carlos E. AU - Ponce, Gustavo AU - Vega, Luis TI - A theorem of Paley-Wiener type for Schrödinger evolutions JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 539 EP - 557 VL - 47 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2221/ DO - 10.24033/asens.2221 LA - en ID - ASENS_2014__47_3_539_0 ER -
%0 Journal Article %A Kenig, Carlos E. %A Ponce, Gustavo %A Vega, Luis %T A theorem of Paley-Wiener type for Schrödinger evolutions %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 539-557 %V 47 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2221/ %R 10.24033/asens.2221 %G en %F ASENS_2014__47_3_539_0
Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis. A theorem of Paley-Wiener type for Schrödinger evolutions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 3, pp. 539-557. doi : 10.24033/asens.2221. http://geodesic.mathdoc.fr/articles/10.24033/asens.2221/
Nonlinear scalar field equations. I & II, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 313-375 (ISSN: 0003-9527) | MR | Zbl | DOI
Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Math., Volume 26B (1939), pp. 1-9 | MR | Zbl
, Harmonic analysis (Cortona, 1982) (Lecture Notes in Math.), Volume 992, Springer, Berlin, 1983, pp. 443-449 | MR | Zbl | DOI
On uniqueness properties of solutions of Schrödinger equations, Comm. Partial Differential Equations, Volume 31 (2006), pp. 1811-1823 (ISSN: 0360-5302) | MR | Zbl | DOI
Hardy's uncertainty principle, convexity and Schrödinger evolutions, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 883-907 (ISSN: 1435-9855) | MR | Zbl | DOI
The sharp Hardy uncertainty principle for Schrödinger evolutions, Duke Math. J., Volume 155 (2010), pp. 163-187 (ISSN: 0012-7094) | MR | Zbl | DOI
Uncertainty principle of Morgan type and Schrödinger evolutions, J. Lond. Math. Soc., Volume 83 (2011), pp. 187-207 (ISSN: 0024-6107) | MR | Zbl | DOI
Uniqueness properties of solutions to Schrödinger equations, Bull. Amer. Math. Soc. (N.S.), Volume 49 (2012), pp. 415-442 (ISSN: 0273-0979) | MR | Zbl | DOI
A Theorem Concerning Fourier Transforms, J. London Math. Soc., Volume S1-8 (1933), pp. 227-231 | MR | Zbl | JFM | DOI
-Carleman inequalities and uniqueness of solutions of nonlinear Schrödinger equations, Acta Math., Volume 193 (2004), pp. 193-239 (ISSN: 0001-5962) | MR | Zbl | DOI
Uniqueness properties of solutions of Schrödinger equations, J. Funct. Anal., Volume 232 (2006), pp. 90-136 (ISSN: 0022-1236) | MR | Zbl | DOI
Carleman type estimates in an anisotropic case and applications, J. Differential Equations, Volume 105 (1993), pp. 217-238 (ISSN: 0022-0396) | MR | Zbl | DOI
On unique continuation for nonlinear Schrödinger equations, Comm. Pure Appl. Math., Volume 56 (2003), pp. 1247-1262 (ISSN: 0010-3640) | MR | Zbl | DOI
, American Mathematical Society Colloquium Publications, 19, Amer. Math. Soc., Providence, RI, 1987, 184 pages (ISBN: 0-8218-1019-7) | MR | Zbl
Uncertainty principles on certain Lie groups, Proc. Indian Acad. Sci. Math. Sci., Volume 105 (1995), pp. 135-151 (ISSN: 0253-4142) | MR | Zbl | DOI
Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55 (1977), pp. 149-162 (ISSN: 0010-3616) | MR | Zbl | DOI
Unique continuation properties of the nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A, Volume 127 (1997), pp. 191-205 (ISSN: 0308-2105) | MR | Zbl | DOI
Cité par Sources :