Quadratic differentials in low genus: exceptional and non-varying strata
[Différentielles quadratiques en petit genre : strates exceptionnelles et strates sans variance]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 2, pp. 309-369.

Voir la notice de l'article provenant de la source Numdam

We give an algebraic way of distinguishing the components of the exceptional strata of quadratic differentials in genus three and four. The complete list of these strata is (9,-1), (6,3,-1), (3,3,3,-1) in genus three and (12), (9,3), (6,6), (6,3,3) and (3,3,3,3) in genus four. The upshot of our method is a detailed study regarding the geometry of canonical curves.

This result is part of a more general investigation about the sum of Lyapunov exponents of Teichmüller curves, building on [9], [6] and [7]. Using disjointness of Teichmüller curves with divisors of Brill-Noether type on the moduli space of curves, we show that for many strata of quadratic differentials in low genus the sum of Lyapunov exponents for the Teichmüller geodesic flow is the same for all Teichmüller curves in that stratum.

Nous présentons une façon algébrique de distinguer les composantes exceptionnelles des strates de l'espace de modules des différentielles quadratiques en genres trois et quatre. La liste complète de ces strates est (9,-1), (6,3,-1) et (3,3,3,-1) en genre trois, (12), (9,3), (6,6), (6,3,3) et (3,3,3,3) en genre quatre, respectivement. La distinction est basée sur des propriétés géométriques du modèle canonique de ces courbes.

Ce résultat fait partie de la détermination de la somme des exposants de Lyapunov des courbes de Teichmüller, dans la continuité de [9], [6] et [7]. Pour beaucoup de strates en petit genre les courbes de Teichmüller sont disjointes des diviseurs de type Brill-Noether. On en déduit que la somme des exposants de Lyapunov de toute courbe de Teichmüller dans ces strates est égale à la somme des exposants pour la mesure à support sur toute la strate.

Publié le :
DOI : 10.24033/asens.2216
Classification : 14H10; 14H51, 37D40
Keywords: Teichmüller curve, sum of Lyapunov exponents, canonical model, Brill-Noether divisor, exceptional strata.
Mots-clés : Courbe de Teichmüller, somme des exposants de Lyapunov, modèle canonique, diviseur de Brill-Noether, strates exceptionnelles.
@article{ASENS_2014__47_2_309_0,
     author = {Chen, Dawei and M\"oller, Martin},
     title = {Quadratic differentials in low genus: exceptional and non-varying strata},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {309--369},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {2},
     year = {2014},
     doi = {10.24033/asens.2216},
     mrnumber = {3215925},
     zbl = {1395.14008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2216/}
}
TY  - JOUR
AU  - Chen, Dawei
AU  - Möller, Martin
TI  - Quadratic differentials in low genus: exceptional and non-varying strata
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 309
EP  - 369
VL  - 47
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2216/
DO  - 10.24033/asens.2216
LA  - en
ID  - ASENS_2014__47_2_309_0
ER  - 
%0 Journal Article
%A Chen, Dawei
%A Möller, Martin
%T Quadratic differentials in low genus: exceptional and non-varying strata
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 309-369
%V 47
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2216/
%R 10.24033/asens.2216
%G en
%F ASENS_2014__47_2_309_0
Chen, Dawei; Möller, Martin. Quadratic differentials in low genus: exceptional and non-varying strata. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 2, pp. 309-369. doi : 10.24033/asens.2216. http://geodesic.mathdoc.fr/articles/10.24033/asens.2216/

Arbarello, E.; Cornalba, M. The Picard groups of the moduli spaces of curves, Topology, Volume 26 (1987), pp. 153-171 (ISSN: 0040-9383) | MR | Zbl | DOI

Arbarello, E.; Cornalba, M. Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Publ. Math. I.H.É.S., Volume 88 (1998), pp. 97-127 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Bainbridge, M. Euler characteristics of Teichmüller curves in genus two, Geom. Topol., Volume 11 (2007), pp. 1887-2073 | Zbl | MR | DOI

Bers, L., Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) (Ann. of Math. Studies), Volume 79, Princeton Univ. Press, 1974, pp. 43-55 | MR | Zbl

Bouw, I.; Möller, M. Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math., Volume 172 (2010), pp. 139-185 (ISSN: 0003-486X) | MR | Zbl | DOI

Chen, D. Square-tiled surfaces and rigid curves on moduli spaces, Adv. Math., Volume 228 (2011), pp. 1135-1162 | MR | Zbl | DOI

Chen, D.; Moeller, M. Non-varying sums of Lyapunov exponents of Abelian differentials in low genus, Geom. Topol., Volume 16 (2012), pp. 2427-2479 | MR | Zbl | DOI

Cukierman, F. Families of Weierstrass points, Duke Math. J., Volume 58 (1989), pp. 317-346 (ISSN: 0012-7094) | MR | Zbl | DOI

Eskin, A.; Kontsevich, M.; Zorich, A. Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow (to appear in Publ. Math. IHÉS ) | MR | Zbl | mathdoc-id

Farkas, G. Koszul divisors on moduli spaces of curves, Amer. J. Math., Volume 131 (2009), pp. 819-867 (ISSN: 0002-9327) | MR | Zbl | DOI

Hassett, B. Stable log surfaces and limits of quartic plane curves, Manuscripta Math., Volume 100 (1999), pp. 469-487 (ISSN: 0025-2611) | MR | Zbl | DOI

Harris, J.; Morrison, I., Graduate Texts in Math., 187, Springer, 1998, 366 pages (ISBN: 0-387-98438-0; 0-387-98429-1) | MR | Zbl

Kontsevich, M., The mathematical beauty of physics (Saclay, 1996) (Adv. Ser. Math. Phys.), Volume 24, World Sci. Publishing, 1997, pp. 318-332 | MR | Zbl

Kontsevich, M.; Zorich, A. Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003), pp. 631-678 (ISSN: 0020-9910) | Zbl | MR | DOI

Lanneau, E. Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities, Comment. Math. Helv., Volume 79 (2004), pp. 471-501 (ISSN: 0010-2571) | MR | Zbl | DOI

Lanneau, E. Connected components of the strata of the moduli spaces of quadratic differentials, Ann. Sci. Éc. Norm. Supér., Volume 41 (2008), pp. 1-56 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

Logan, A. The Kodaira dimension of moduli spaces of curves with marked points, Amer. J. Math., Volume 125 (2003), pp. 105-138 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI

Masur, H. Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200 (ISSN: 0003-486X) | MR | Zbl | DOI

Möller, M. Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc., Volume 19 (2006), pp. 327-344 (ISSN: 0894-0347) | MR | Zbl | DOI

Möller, M., IAS/Park City Mathematics Series, AMS, 2013, pp. 267-318 | MR | Zbl

Trapani, S. On the determinant of the bundle of meromorphic quadratic differentials on the Deligne-Mumford compactification of the moduli space of Riemann surfaces, Math. Ann., Volume 293 (1992), pp. 681-705 | MR | Zbl | DOI

Veech, W. A. Moduli spaces of quadratic differentials, J. Analyse Math., Volume 55 (1990), pp. 117-171 (ISSN: 0021-7670) | MR | Zbl | DOI

Wolpert, S., Lectures on Riemann surfaces (Trieste, 1987), World Sci. Publ., Teaneck, NJ, 1989, pp. 48-98 | MR | Zbl | DOI

Yu, F.; Zuo, K. Weierstrass filtration on Teichmüller curves and Lyapunov exponents, J. Mod. Dyn., Volume 7 (2013), pp. 209-237 (ISSN: 1930-5311) | MR | Zbl | DOI

Zorich, A. Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials., Journ. Modern Dyn., Volume 2 (208), pp. 139-185 | MR | Zbl

Cité par Sources :