Voir la notice de l'article provenant de la source Numdam
A translation structure on gives rise to two transverse measured foliations on with singularities in , and by integration, to a pair of relative cohomology classes . Given a measured foliation , we characterize the set of cohomology classes for which there is a measured foliation as above with . This extends previous results of Thurston [19] and Sullivan [18].
We apply this to two problems: unique ergodicity of interval exchanges and flows on the moduli space of translation surfaces. For a fixed permutation , the space parametrizes the interval exchanges on intervals with permutation . We describe lines in such that almost every point in is uniquely ergodic. We also show that for , for almost every , the interval exchange transformation corresponding to and is uniquely ergodic. As another application we show that when the operation of “moving the singularities horizontally” is globally well-defined. We prove that there is a well-defined action of the group on the set of translation surfaces of type without horizontal saddle connections. Here is the subgroup of upper triangular matrices.
Une structure de translation sur une surface marquée donne lieu à deux feuilletages mesurés , sur à singularités dans et, par intégration, à un couple de classes de cohomologie relative , . Étant donné un feuilletage mesuré , nous caractérisons l'ensemble des classes de cohomologie pour lesquelles il existe un feuilletage mesuré comme ci-dessus tel que . Cela généralise des résultats antérieurs de Thurston [19] et Sullivan [18].
Nous appliquons ce résultat à deux problèmes : l'unique ergodicité des échanges d'intervalles et les flots sur l'espace des modules des surfaces de translation. Étant donnée une permutation , l'ensemble paramètre les échanges d'intervalles sur intervalles de permutation associée . Nous décrivons les droites de dont presque tout point est uniquement ergodique. Nous démontrons aussi que si est donnée par , pour presque tout , l'échange d'intervalles correspondant à et à est uniquement ergodique. Une autre application est que lorsque , l'opération consistant à « déplacer horizontalement les singularités » est bien définie. En notant le sous-groupe des matrices triangulaires supérieures de , nous prouvons qu'il y a une action bien définie du groupe sur l'ensemble des surfaces de translation de type sans connexion horizontale.
@article{ASENS_2014__47_2_245_0, author = {Minsky, Yair and Weiss, Barak}, title = {Cohomology classes represented by measured foliations, and {Mahler's} question for interval exchanges}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {245--284}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {2}, year = {2014}, doi = {10.24033/asens.2214}, mrnumber = {3215923}, zbl = {1346.37039}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2214/} }
TY - JOUR AU - Minsky, Yair AU - Weiss, Barak TI - Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 245 EP - 284 VL - 47 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2214/ DO - 10.24033/asens.2214 LA - en ID - ASENS_2014__47_2_245_0 ER -
%0 Journal Article %A Minsky, Yair %A Weiss, Barak %T Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 245-284 %V 47 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2214/ %R 10.24033/asens.2214 %G en %F ASENS_2014__47_2_245_0
Minsky, Yair; Weiss, Barak. Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 2, pp. 245-284. doi : 10.24033/asens.2214. http://geodesic.mathdoc.fr/articles/10.24033/asens.2214/
Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math., Volume 5 (1996), pp. 233-297 (ISSN: 0240-2955) | MR | Zbl | mathdoc-id | DOI
A divergent Teichmüller geodesic with uniquely ergodic vertical foliation, Israel J. Math., Volume 152 (2006), pp. 1-15 (ISSN: 0021-2172) | MR | Zbl | DOI
On unipotent flows in , Ergodic Theory Dynam. Systems, Volume 30 (2010), pp. 379-398 (ISSN: 0143-3857) | MR | Zbl | DOI
Unipotent flows on the space of branched covers of Veech surfaces, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 129-162 (ISSN: 0143-3857) | MR | Zbl | DOI
, Smooth ergodic theory and its applications (Seattle, WA, 1999) (Proc. Sympos. Pure Math.), Volume 69, Amer. Math. Soc., 2001, pp. 639-660 | MR | Zbl | DOI
Ergodicity of billiard flows and quadratic differentials, Ann. of Math., Volume 124 (1986), pp. 293-311 (ISSN: 0003-486X) | MR | Zbl | DOI
Bounded geodesics in moduli space, Int. Math. Res. Not., Volume 2004 (2004), pp. 1551-1560 (ISSN: 1073-7928) | MR | Zbl | DOI
Badly approximable vectors on fractals, Israel J. Math., Volume 149 (2005), pp. 137-170 (ISSN: 0021-2172) | MR | Zbl | DOI
Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200 (ISSN: 0003-486X) | MR | Zbl | DOI
Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J., Volume 66 (1992), pp. 387-442 (ISSN: 0012-7094) | MR | Zbl | DOI
, Cambridge Studies in Advanced Math., 44, Cambridge Univ. Press, 1995, 343 pages (ISBN: 0-521-46576-1; 0-521-65595-1) | MR | Zbl
Foliations of Hilbert modular surfaces, Amer. J. Math., Volume 129 (2007), pp. 183-215 (ISSN: 0002-9327) | MR | Zbl | DOI
Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math., Volume 134 (1991), pp. 455-543 (ISSN: 0003-486X) | MR | Zbl | DOI
, Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, pp. 1015-1089 | MR | Zbl | DOI
Nondivergence of horocyclic flows on moduli space, J. reine angew. Math., Volume 552 (2002), pp. 131-177 (ISSN: 0075-4102) | MR | Zbl | DOI
, Annals of Math. Studies, 125, Princeton Univ. Press, 1992, 216 pages (ISBN: 0-691-08764-4; 0-691-02531-2) | MR | Zbl
Asymptotic cycles, Volume 3 (2008) no. 12, 5463 pages ( http://www.scholarpedia.org/article/Asymptotic_cycles )
Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math., Volume 36 (1976), pp. 225-255 (ISSN: 0020-9910) | MR | Zbl | DOI
Minimal stretch maps between hyperbolic surfaces (preprint arXiv:math.GT/9801039 ) | MR
Interval exchange transformations, J. Analyse Math., Volume 33 (1978), pp. 222-272 (ISSN: 0021-7670) | MR | Zbl | DOI
Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982), pp. 201-242 (ISSN: 0003-486X) | MR | Zbl | DOI
Measures supported on the set of uniquely ergodic directions of an arbitrary holomorphic 1-form, Ergodic Theory Dynam. Systems, Volume 19 (1999), pp. 1093-1109 (ISSN: 0143-3857) | MR | Zbl | DOI
Plane structures and billiards in rational polygons: the Veech alternative, Russian Math. Surveys, Volume 51 (1996), pp. 779-817 | MR | Zbl | DOI
Topological transitivity of billiards in polygons, Mat. Zametki, Volume 18 (1975), pp. 291-300 (ISSN: 0025-567X) | MR | Zbl
, Frontiers in number theory, physics, and geometry. I (Cartier, P.; Julia, B.; Moussa, P.; Vanhove, P., eds.), Springer, 2006, pp. 437-583 | MR | Zbl | DOI
Cité par Sources :