Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges
[Classes de cohomologie représentées par des feuilletages mesurés et question de Mahler pour les échanges d'intervalles]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 2, pp. 245-284.

Voir la notice de l'article provenant de la source Numdam

A translation structure on (S,Σ) gives rise to two transverse measured foliations ,𝒢 on S with singularities in Σ, and by integration, to a pair of relative cohomology classes [],[𝒢]H1(S,Σ;). Given a measured foliation , we characterize the set of cohomology classes 𝐛 for which there is a measured foliation 𝒢 as above with 𝐛=[𝒢]. This extends previous results of Thurston [19] and Sullivan [18].

We apply this to two problems: unique ergodicity of interval exchanges and flows on the moduli space of translation surfaces. For a fixed permutation σ𝒮d, the space +d parametrizes the interval exchanges on d intervals with permutation σ. We describe lines in +d such that almost every point in  is uniquely ergodic. We also show that for σ(i)=d+1-i, for almost every s>0, the interval exchange transformation corresponding to σ and (s,s2,...,sd) is uniquely ergodic. As another application we show that when k=|Σ|2, the operation of “moving the singularities horizontally” is globally well-defined. We prove that there is a well-defined action of the group Bk-1 on the set of translation surfaces of type (S,Σ) without horizontal saddle connections. Here BSL(2,) is the subgroup of upper triangular matrices.

Une structure de translation sur une surface marquée (S,Σ) donne lieu à deux feuilletages mesurés , 𝒢 sur S à singularités dans Σ et, par intégration, à un couple de classes de cohomologie relative [], [𝒢]H1(S,Σ;). Étant donné un feuilletage mesuré , nous caractérisons l'ensemble des classes de cohomologie 𝐛 pour lesquelles il existe un feuilletage mesuré 𝒢 comme ci-dessus tel que 𝐛=[𝒢]. Cela généralise des résultats antérieurs de Thurston [19] et Sullivan [18].

Nous appliquons ce résultat à deux problèmes : l'unique ergodicité des échanges d'intervalles et les flots sur l'espace des modules des surfaces de translation. Étant donnée une permutation σ𝒮d, l'ensemble +d paramètre les échanges d'intervalles sur d intervalles de permutation associée σ. Nous décrivons les droites de +d dont presque tout point est uniquement ergodique. Nous démontrons aussi que si σ est donnée par σ(i)=d+1-i, pour presque tout s>0, l'échange d'intervalles correspondant à σ et à (s,s2,,sd) est uniquement ergodique. Une autre application est que lorsque k=|Σ|2, l'opération consistant à « déplacer horizontalement les singularités » est bien définie. En notant B le sous-groupe des matrices triangulaires supérieures de SL(2,), nous prouvons qu'il y a une action bien définie du groupe  B×k-1 sur l'ensemble des surfaces de translation de type (S,Σ) sans connexion horizontale.

Publié le :
DOI : 10.24033/asens.2214
Classification : 37D40; 32G15 37F30 57M50.
Keywords: Cohomology classes, measured foliations, interval exchanges.
Mots-clés : Classes de cohomologie, feuilletages mesurés, la question de Mahler, échanges d'intervalles.
@article{ASENS_2014__47_2_245_0,
     author = {Minsky, Yair and Weiss, Barak},
     title = {Cohomology classes represented  by measured foliations, and {Mahler's} question for interval exchanges},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {245--284},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {2},
     year = {2014},
     doi = {10.24033/asens.2214},
     mrnumber = {3215923},
     zbl = {1346.37039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2214/}
}
TY  - JOUR
AU  - Minsky, Yair
AU  - Weiss, Barak
TI  - Cohomology classes represented  by measured foliations, and Mahler's question for interval exchanges
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 245
EP  - 284
VL  - 47
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2214/
DO  - 10.24033/asens.2214
LA  - en
ID  - ASENS_2014__47_2_245_0
ER  - 
%0 Journal Article
%A Minsky, Yair
%A Weiss, Barak
%T Cohomology classes represented  by measured foliations, and Mahler's question for interval exchanges
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 245-284
%V 47
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2214/
%R 10.24033/asens.2214
%G en
%F ASENS_2014__47_2_245_0
Minsky, Yair; Weiss, Barak. Cohomology classes represented  by measured foliations, and Mahler's question for interval exchanges. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 2, pp. 245-284. doi : 10.24033/asens.2214. http://geodesic.mathdoc.fr/articles/10.24033/asens.2214/

Bonahon, F. Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math., Volume 5 (1996), pp. 233-297 (ISSN: 0240-2955) | MR | Zbl | mathdoc-id | DOI

Cheung, Y.; Masur, H. A divergent Teichmüller geodesic with uniquely ergodic vertical foliation, Israel J. Math., Volume 152 (2006), pp. 1-15 (ISSN: 0021-2172) | MR | Zbl | DOI

Calta, K.; Wortman, K. On unipotent flows in (1,1) , Ergodic Theory Dynam. Systems, Volume 30 (2010), pp. 379-398 (ISSN: 0143-3857) | MR | Zbl | DOI

Eskin, A.; Marklof, J.; Witte Morris, D. Unipotent flows on the space of branched covers of Veech surfaces, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 129-162 (ISSN: 0143-3857) | MR | Zbl | DOI

Kleinbock, D., Smooth ergodic theory and its applications (Seattle, WA, 1999) (Proc. Sympos. Pure Math.), Volume 69, Amer. Math. Soc., 2001, pp. 639-660 | MR | Zbl | DOI

Kerckhoff, S.; Masur, H.; Smillie, J. Ergodicity of billiard flows and quadratic differentials, Ann. of Math., Volume 124 (1986), pp. 293-311 (ISSN: 0003-486X) | MR | Zbl | DOI

Kleinbock, D.; Weiss, B. Bounded geodesics in moduli space, Int. Math. Res. Not., Volume 2004 (2004), pp. 1551-1560 (ISSN: 1073-7928) | MR | Zbl | DOI

Kleinbock, D.; Weiss, B. Badly approximable vectors on fractals, Israel J. Math., Volume 149 (2005), pp. 137-170 (ISSN: 0021-2172) | MR | Zbl | DOI

Masur, H. Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200 (ISSN: 0003-486X) | MR | Zbl | DOI

Masur, H. Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J., Volume 66 (1992), pp. 387-442 (ISSN: 0012-7094) | MR | Zbl | DOI

Mattila, P., Cambridge Studies in Advanced Math., 44, Cambridge Univ. Press, 1995, 343 pages (ISBN: 0-521-46576-1; 0-521-65595-1) | MR | Zbl

McMullen, C. T. Foliations of Hilbert modular surfaces, Amer. J. Math., Volume 129 (2007), pp. 183-215 (ISSN: 0002-9327) | MR | Zbl | DOI

Masur, H.; Smillie, J. Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math., Volume 134 (1991), pp. 455-543 (ISSN: 0003-486X) | MR | Zbl | DOI

Masur, H.; Tabachnikov, S., Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, pp. 1015-1089 | MR | Zbl | DOI

Minsky, Y.; Weiss, B. Nondivergence of horocyclic flows on moduli space, J. reine angew. Math., Volume 552 (2002), pp. 131-177 (ISSN: 0075-4102) | MR | Zbl | DOI

Penner, R. C.; Harer, J. L., Annals of Math. Studies, 125, Princeton Univ. Press, 1992, 216 pages (ISBN: 0-691-08764-4; 0-691-02531-2) | MR | Zbl

Schwartzman, S. Asymptotic cycles, Volume 3 (2008) no. 12, 5463 pages ( http://www.scholarpedia.org/article/Asymptotic_cycles )

Sullivan, D. Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math., Volume 36 (1976), pp. 225-255 (ISSN: 0020-9910) | MR | Zbl | DOI

Thurston, W. P. Minimal stretch maps between hyperbolic surfaces (preprint arXiv:math.GT/9801039 ) | MR

Veech, W. A. Interval exchange transformations, J. Analyse Math., Volume 33 (1978), pp. 222-272 (ISSN: 0021-7670) | MR | Zbl | DOI

Veech, W. A. Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982), pp. 201-242 (ISSN: 0003-486X) | MR | Zbl | DOI

Veech, W. A. Measures supported on the set of uniquely ergodic directions of an arbitrary holomorphic 1-form, Ergodic Theory Dynam. Systems, Volume 19 (1999), pp. 1093-1109 (ISSN: 0143-3857) | MR | Zbl | DOI

Vorobets, Y. B. Plane structures and billiards in rational polygons: the Veech alternative, Russian Math. Surveys, Volume 51 (1996), pp. 779-817 | MR | Zbl | DOI

Zemljakov, A. N.; Katok, A. B. Topological transitivity of billiards in polygons, Mat. Zametki, Volume 18 (1975), pp. 291-300 (ISSN: 0025-567X) | MR | Zbl

Zorich, A., Frontiers in number theory, physics, and geometry. I (Cartier, P.; Julia, B.; Moussa, P.; Vanhove, P., eds.), Springer, 2006, pp. 437-583 | MR | Zbl | DOI

Cité par Sources :