Voir la notice de l'article provenant de la source Numdam
We consider the following Hamiltonian equation on the Hardy space on the circle,
On considère l’équation hamiltonienne suivante sur l’espace de Hardy du cercle
@article{ASENS_2010_4_43_5_761_0, author = {G\'erard, Patrick and Grellier, Sandrine}, title = {The cubic {Szeg\H{o}} equation}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {761--810}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 43}, number = {5}, year = {2010}, doi = {10.24033/asens.2133}, mrnumber = {2721876}, zbl = {1228.35225}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2133/} }
TY - JOUR AU - Gérard, Patrick AU - Grellier, Sandrine TI - The cubic Szegő equation JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 SP - 761 EP - 810 VL - 43 IS - 5 PB - Société mathématique de France UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2133/ DO - 10.24033/asens.2133 LA - en ID - ASENS_2010_4_43_5_761_0 ER -
%0 Journal Article %A Gérard, Patrick %A Grellier, Sandrine %T The cubic Szegő equation %J Annales scientifiques de l'École Normale Supérieure %D 2010 %P 761-810 %V 43 %N 5 %I Société mathématique de France %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2133/ %R 10.24033/asens.2133 %G en %F ASENS_2010_4_43_5_761_0
Gérard, Patrick; Grellier, Sandrine. The cubic Szegő equation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 5, pp. 761-810. doi : 10.24033/asens.2133. http://geodesic.mathdoc.fr/articles/10.24033/asens.2133/
[1] Mathematical methods of classical mechanics, Springer, 1978. | Zbl | MR
,[2] On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations, J. London Math. Soc. 53 (1996), 551-559. | Zbl | MR
, , , & ,[3] Nonlinear Schrödinger evolution equations, Nonlinear Anal. 4 (1980), 677-681. | Zbl | MR
& ,[4] An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett. 9 (2002), 323-335. | Zbl
, & ,[5] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), 569-605. | Zbl
, & ,[6] Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 (2005), 187-223. | Zbl
, & ,[7] Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. 38 (2005), 255-301. | Zbl
, & ,[8] High frequency solutions of the nonlinear Schrödinger equation on surfaces, Quart. Appl. Math. 68 (2010), 61-71. | Zbl
, & ,[9] Weakly turbulent solutions for the cubic defocusing nonlinear Schrödinger equation, preprint arXiv:08081742.
, , , & ,[10] Nonlinear Schrödinger equations in inhomogeneous media: wellposedness and illposedness of the Cauchy problem, in International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, 157-182. | Zbl
,[11] L'équation de Szegő cubique, Séminaire X-EDP, École polytechnique, 2008. | Zbl
& ,[12] Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal. 94 (1990), 308-348. | Zbl
, & ,[13] KdV & KAM, Ergebnisse Math. Grenzg. 45, Springer, 2003.
& ,[14] Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen, Monatsber. königl. preuss. Akad. Wiss. (1881), 535-600, reprinted in Mathematische Werke, vol. 2, 113-192, Chelsea, 1968. | JFM
,[15] Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications 19, Oxford Univ. Press, 2000. | Zbl | MR
,[16] Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490. | Zbl | MR
,[17] On bounded bilinear forms, Ann. of Math. 65 (1957), 153-162. | Zbl | MR
,[18] Bose-Einstein condensates in the lowest Landau level: Hamiltonian dynamics, Rev. Math. Phys. 19 (2007), 101-130. | Zbl | MR
,[19] Operators, functions, and systems: an easy reading. Vol. 1, Mathematical Surveys and Monographs 92, Amer. Math. Soc., 2002. | Zbl | MR
,[20] A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal. 14 (1990), 765-769. | Zbl | MR
,[21] Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Math. USSR Sb. 41 (1982), 443-479. | Zbl
,[22] Hankel operators and their applications, Springer Monographs in Math., Springer, 2003. | Zbl | MR
,[23] Real and complex analysis, third éd., McGraw-Hill Book Co., 1987, Analyse réelle et complexe, Masson, 1980. | Zbl | MR
,[24] À la frontière entre EDP semi- et quasi-linéaires, HDR, Université Paris-Sud Orsay, 2003.
,[25] On the solvability of a mixed problem for a nonlinear equation of Schrödinger type, Sov. Math. Dokl. 29 (1984), 281-284. | Zbl | MR
,[26] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), 567-576. | Zbl | MR
,[27] Non-stationary flow of an ideal incompressible liquid, USSR Comput. Math. Math. Phys. 3 (1963), 1407-1456 (english), Zh. Vuch. Mat. 3 (1963), 1032-1066 (russian). | Zbl
,[28] Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972), 62-69. | MR
& ,Cité par Sources :