Voir la notice de l'article provenant de la source Numdam
We show that the Zink equivalence between -divisible groups and Dieudonné displays over a complete local ring with perfect residue field of characteristic is compatible with duality. The proof relies on a new explicit formula for the -divisible group associated to a Dieudonné display.
Nous montrons que l’équivalence de Zink entre les groupes -divisibles et les displays de Dieudonné sur un anneau local complet à corps résiduel parfait de caractéristique est compatible avec la dualité. La preuve repose sur une nouvelle formule explicite pour le groupe -divisible associé à un display de Dieudonné.
@article{ASENS_2009_4_42_2_241_0, author = {Lau, Eike}, title = {A duality theorem for {Dieudonn\'e} displays}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {241--259}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 42}, number = {2}, year = {2009}, doi = {10.24033/asens.2095}, mrnumber = {2518078}, zbl = {1182.14051}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2095/} }
TY - JOUR AU - Lau, Eike TI - A duality theorem for Dieudonné displays JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 241 EP - 259 VL - 42 IS - 2 PB - Société mathématique de France UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2095/ DO - 10.24033/asens.2095 LA - en ID - ASENS_2009_4_42_2_241_0 ER -
%0 Journal Article %A Lau, Eike %T A duality theorem for Dieudonné displays %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 241-259 %V 42 %N 2 %I Société mathématique de France %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2095/ %R 10.24033/asens.2095 %G en %F ASENS_2009_4_42_2_241_0
Lau, Eike. A duality theorem for Dieudonné displays. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 2, pp. 241-259. doi : 10.24033/asens.2095. http://geodesic.mathdoc.fr/articles/10.24033/asens.2095/
[1] Théorie de Dieudonné cristalline II, Lecture Notes in Math. 930, Springer, 1982. | Zbl | MR
, & ,[2] Groupes -divisibles, groupes finis et modules filtrés, Ann. of Math. 152 (2000), 489-549. | Zbl | MR
,[3] Groupes formels associés aux anneaux de Witt généralisés, C. R. Acad. Sci. 265 (1976), 50-52. | Zbl
,[4] Dualité de Cartier et modules de Breuil, preprint arXiv:math/0511423.
,[5] Displays and formal -divisible groups, Invent. Math. 171 (2008), 617-628. | Zbl | MR
,[6] Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1986. | Zbl | MR
,[7] Universal extensions and one dimensional crystalline cohomology, Lecture Notes in Math. 370, Springer, 1974. | Zbl | MR
& ,[8] The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Math. 264, Springer, 1972. | Zbl | MR
,[9] Bi-extensions of formal groups, in Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, 1969, 307-322. | Zbl | MR
,[10] An algorithm for computing local moduli of abelian varieties, Ann. Math. 101 (1975), 499-509. | Zbl | MR
,[11] A Dieudonné theory for -divisible groups, in Class field theory-its centenary and prospect (Tokyo, 1998), Adv. Stud. Pure Math. 30, Math. Soc. Japan, 2001, 139-160. | Zbl | MR
,[12] Windows for displays of -divisible groups, in Moduli of abelian varieties (Texel Island, 1999), Progr. Math. 195, Birkhäuser, 2001, 491-518. | Zbl | MR
,[13] The display of a formal -divisible group, Astérisque 278 (2002), 127-248. | Zbl | MR | mathdoc-id
,Cité par Sources :