Nonlinear compressible vortex sheets in two space dimensions
[Nappes de tourbillon compressibles]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 1, pp. 85-139.

Voir la notice de l'article provenant de la source Numdam

We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized equations exhibit a loss of regularity, our existence result is proved by using a suitable modification of the Nash-Moser iteration scheme. We also show how a similar analysis yields the existence of weakly stable shock waves in isentropic gas dynamics, and the existence of weakly stable liquid/vapor phase transitions.

Nous construisons des nappes de tourbillon supersoniques pour les équations d'Euler compressibles isentropiques en deux dimensions d'espace. Il s'agit d'un problème non-linéaire hyperbolique à frontière libre présentant deux difficultés principales : la frontière libre est caractéristique et la condition dite de Lopatinskii n'est satisfaite que dans un sens faible, ce qui induit des estimations à perte. Néanmoins nous montrons l'existence de telles solutions régulières par morceaux des équations d'Euler en utilisant un schéma itératif de type Nash-Moser palliant les pertes de régularité. Notre analyse s'étend au cas de discontinuités non-caractéristiques et faiblement stables comme certaines ondes de choc pour les équations d'Euler ou les transitions de phase liquide- vapeur.

DOI : 10.24033/asens.2064
Classification : 76N10, 35Q35, 35L50, 76E17
Keywords: compressible Euler equations, vortex sheets, contact discontinuities, weak stability, loss of derivatives
@article{ASENS_2008_4_41_1_85_0,
     author = {Coulombel, Jean-Fran\c{c}ois and Secchi, Paolo},
     title = {Nonlinear compressible vortex sheets in two space dimensions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {85--139},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 41},
     number = {1},
     year = {2008},
     doi = {10.24033/asens.2064},
     mrnumber = {2423311},
     zbl = {1160.35061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2064/}
}
TY  - JOUR
AU  - Coulombel, Jean-François
AU  - Secchi, Paolo
TI  - Nonlinear compressible vortex sheets in two space dimensions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2008
SP  - 85
EP  - 139
VL  - 41
IS  - 1
PB  - Société mathématique de France
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2064/
DO  - 10.24033/asens.2064
LA  - en
ID  - ASENS_2008_4_41_1_85_0
ER  - 
%0 Journal Article
%A Coulombel, Jean-François
%A Secchi, Paolo
%T Nonlinear compressible vortex sheets in two space dimensions
%J Annales scientifiques de l'École Normale Supérieure
%D 2008
%P 85-139
%V 41
%N 1
%I Société mathématique de France
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2064/
%R 10.24033/asens.2064
%G en
%F ASENS_2008_4_41_1_85_0
Coulombel, Jean-François; Secchi, Paolo. Nonlinear compressible vortex sheets in two space dimensions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 1, pp. 85-139. doi : 10.24033/asens.2064. http://geodesic.mathdoc.fr/articles/10.24033/asens.2064/

[1] S. Alinhac, Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations 14 (1989), 173-230. | Zbl | MR

[2] S. Alinhac & S. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterÉditions, 1991. | Zbl

[3] M. Artola & A. Majda, Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes, Phys. D 28 (1987), 253-281. | Zbl

[4] S. Benzoni-Gavage, Stability of multi-dimensional phase transitions in a van der Waals fluid, Nonlinear Anal. 31 (1998), 243-263. | Zbl | MR

[5] S. Benzoni-Gavage, Stability of subsonic planar phase boundaries in a van der Waals fluid, Arch. Ration. Mech. Anal. 150 (1999), 23-55. | Zbl | MR

[6] A. Blokhin & Y. Trakhinin, Stability of strong discontinuities in fluids and MHD, in Handbook of mathematical fluid dynamics, Vol. I, North-Holland, 2002, 545-652. | Zbl

[7] J. Chazarain & A. Piriou, Introduction to the theory of linear partial differential equations, Studies in Mathematics and its Applications 14, North-Holland Publishing Co., 1982. | Zbl

[8] J.-Y. Chemin, Dynamique des gaz à masse totale finie, Asymptotic Anal. 3 (1990), 215-220. | Zbl | MR

[9] J.-F. Coulombel, Weakly stable multidimensional shocks, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 401-443. | Zbl | MR | mathdoc-id

[10] J.-F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl. 84 (2005), 786-818. | Zbl | MR

[11] J.-F. Coulombel & A. Morando, Stability of contact discontinuities for the nonisentropic Euler equations, Ann. Univ. Ferrara Sez. VII (N.S.) 50 (2004), 79-90. | Zbl

[12] J.-F. Coulombel & P. Secchi, The stability of compressible vortex sheets in two space dimensions, Indiana Univ. Math. J. 53 (2004), 941-1012. | Zbl

[13] J. A. Fejer & J. W. Miles, On the stability of a plane vortex sheet with respect to three-dimensional disturbances, J. Fluid Mech. 15 (1963), 335-336. | Zbl

[14] J. Francheteau & G. Métivier, Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Astérisque 268 (2000), 198. | Zbl | mathdoc-id

[15] H. Freistühler, Some results on the stability of non-classical shock waves, J. Partial Differential Equations 11 (1998), 25-38. | Zbl

[16] O. Guès, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations 15 (1990), 595-645. | Zbl | MR

[17] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65-222. | Zbl | MR

[18] E. Harabetian, A convergent series expansion for hyperbolic systems of conservation laws, Trans. Amer. Math. Soc. 294 (1986), 383-424. | Zbl | MR

[19] L. Hörmander, Implicit function theorems, Stanford university lecture notes, 1977.

[20] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58 (1975), 181-205. | Zbl | MR

[21] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537-566. | Zbl | MR

[22] J.-L. Lions & E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2, Travaux et Recherches Mathématiques, No. 18, Dunod, 1968. | Zbl

[23] A. Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc. 43 (1983), 93. | Zbl | MR

[24] A. Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc. 41 (1983), 95. | Zbl | MR

[25] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences 53, Springer, 1984. | Zbl | MR

[26] A. Majda & S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math. 28 (1975), 607-675. | Zbl

[27] G. Métivier, Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace, Trans. Amer. Math. Soc. 296 (1986), 431-479. | Zbl | MR

[28] G. Métivier, Ondes soniques, J. Math. Pures Appl. 70 (1991), 197-268. | Zbl | MR

[29] G. Métivier, Stability of multidimensional shocks, in Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl. 47, Birkhäuser, 2001, 25-103. | Zbl | MR

[30] J. W. Miles, On the disturbed motion of a plane vortex sheet, J. Fluid Mech. 4 (1958), 538-552. | Zbl | MR

[31] A. Mokrane, Problèmes mixtes hyperboliques non-linéaires, Thèse, Université de Rennes I, 1987.

[32] A. Morando & P. Trebeschi, Stability of contact discontinuities for the nonisentropic Euler equations in two-space dimensions, preprint, 2007. | Zbl

[33] J. B. Rauch & F. J. I. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303-318. | Zbl

[34] S. Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit, Comm. Math. Phys. 104 (1986), 49-75. | Zbl | MR

[35] P. Secchi, The initial-boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity, Differential Integral Equations 9 (1996), 671-700. | Zbl | MR

[36] P. Secchi, Well-posedness of characteristic symmetric hyperbolic systems, Arch. Rational Mech. Anal. 134 (1996), 155-197. | Zbl | MR

[37] D. Serre, Systems of conservation laws. 2, Cambridge University Press, 2000, Geometric structures, oscillations, and initial-boundary value problems. | Zbl | MR

[38] T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys. 101 (1985), 475-485. | Zbl | MR

[39] H. Beirão Da Veiga, On the barotropic motion of compressible perfect fluids, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981), 317-351. | Zbl | MR | mathdoc-id

Cité par Sources :