Two lower bounds for $p$-centered colorings
Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 4
Voir la notice de l'article provenant de la source Episciences
Given a graph $G$ and an integer $p$, a coloring $f : V(G) \to \mathbb{N}$ is \emph{$p$-centered} if for every connected subgraph $H$ of $G$, either $f$ uses more than $p$ colors on $H$ or there is a color that appears exactly once in $H$. The notion of $p$-centered colorings plays a central role in the theory of sparse graphs. In this note we show two lower bounds on the number of colors required in a $p$-centered coloring. First, we consider monotone classes of graphs whose shallow minors have average degree bounded polynomially in the radius, or equivalently (by a result of Dvo\v{r}\'ak and Norin), admitting strongly sublinear separators. We construct such a class such that $p$-centered colorings require a number of colors super-polynomial in $p$. This is in contrast with a recent result of Pilipczuk and Siebertz, who established a polynomial upper bound in the special case of graphs excluding a fixed minor. Second, we consider graphs of maximum degree $\Delta$. D\k{e}bski, Felsner, Micek, and Schr\"{o}der recently proved that these graphs have $p$-centered colorings with $O(\Delta^{2-1/p} p)$ colors. We show that there are graphs of maximum degree $\Delta$ that require $\Omega(\Delta^{2-1/p} p \ln^{-1/p}\Delta)$ colors in any $p$-centered coloring, thus matching their upper bound up to a logarithmic factor.
@article{DMTCS_2020_22_4_a8,
author = {Dubois, Lo{\"\i}c and Joret, Gwena\"el and Perarnau, Guillem and Pilipczuk, Marcin and Pitois, Fran\c{c}ois},
title = {Two lower bounds for $p$-centered colorings},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2020-2021},
doi = {10.23638/DMTCS-22-4-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-9/}
}
TY - JOUR AU - Dubois, Loïc AU - Joret, Gwenaël AU - Perarnau, Guillem AU - Pilipczuk, Marcin AU - Pitois, François TI - Two lower bounds for $p$-centered colorings JO - Discrete mathematics & theoretical computer science PY - 2020-2021 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-9/ DO - 10.23638/DMTCS-22-4-9 LA - en ID - DMTCS_2020_22_4_a8 ER -
%0 Journal Article %A Dubois, Loïc %A Joret, Gwenaël %A Perarnau, Guillem %A Pilipczuk, Marcin %A Pitois, François %T Two lower bounds for $p$-centered colorings %J Discrete mathematics & theoretical computer science %D 2020-2021 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-9/ %R 10.23638/DMTCS-22-4-9 %G en %F DMTCS_2020_22_4_a8
Dubois, Loïc; Joret, Gwenaël; Perarnau, Guillem; Pilipczuk, Marcin; Pitois, François. Two lower bounds for $p$-centered colorings. Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 4. doi: 10.23638/DMTCS-22-4-9
Cité par Sources :