Two lower bounds for $p$-centered colorings
Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 4.

Voir la notice de l'article provenant de la source Episciences

Given a graph $G$ and an integer $p$, a coloring $f : V(G) \to \mathbb{N}$ is \emph{$p$-centered} if for every connected subgraph $H$ of $G$, either $f$ uses more than $p$ colors on $H$ or there is a color that appears exactly once in $H$. The notion of $p$-centered colorings plays a central role in the theory of sparse graphs. In this note we show two lower bounds on the number of colors required in a $p$-centered coloring. First, we consider monotone classes of graphs whose shallow minors have average degree bounded polynomially in the radius, or equivalently (by a result of Dvo\v{r}\'ak and Norin), admitting strongly sublinear separators. We construct such a class such that $p$-centered colorings require a number of colors super-polynomial in $p$. This is in contrast with a recent result of Pilipczuk and Siebertz, who established a polynomial upper bound in the special case of graphs excluding a fixed minor. Second, we consider graphs of maximum degree $\Delta$. D\k{e}bski, Felsner, Micek, and Schr\"{o}der recently proved that these graphs have $p$-centered colorings with $O(\Delta^{2-1/p} p)$ colors. We show that there are graphs of maximum degree $\Delta$ that require $\Omega(\Delta^{2-1/p} p \ln^{-1/p}\Delta)$ colors in any $p$-centered coloring, thus matching their upper bound up to a logarithmic factor.
DOI : 10.23638/DMTCS-22-4-9
Classification : 05C15, 05C75
@article{DMTCS_2020_22_4_a8,
     author = {Dubois, Lo{\"\i}c and Joret, Gwena\"el and Perarnau, Guillem and Pilipczuk, Marcin and Pitois, Fran\c{c}ois},
     title = {Two lower bounds for $p$-centered colorings},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2020-2021},
     doi = {10.23638/DMTCS-22-4-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-9/}
}
TY  - JOUR
AU  - Dubois, Loïc
AU  - Joret, Gwenaël
AU  - Perarnau, Guillem
AU  - Pilipczuk, Marcin
AU  - Pitois, François
TI  - Two lower bounds for $p$-centered colorings
JO  - Discrete mathematics & theoretical computer science
PY  - 2020-2021
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-9/
DO  - 10.23638/DMTCS-22-4-9
LA  - en
ID  - DMTCS_2020_22_4_a8
ER  - 
%0 Journal Article
%A Dubois, Loïc
%A Joret, Gwenaël
%A Perarnau, Guillem
%A Pilipczuk, Marcin
%A Pitois, François
%T Two lower bounds for $p$-centered colorings
%J Discrete mathematics & theoretical computer science
%D 2020-2021
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-9/
%R 10.23638/DMTCS-22-4-9
%G en
%F DMTCS_2020_22_4_a8
Dubois, Loïc; Joret, Gwenaël; Perarnau, Guillem; Pilipczuk, Marcin; Pitois, François. Two lower bounds for $p$-centered colorings. Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 4. doi : 10.23638/DMTCS-22-4-9. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-9/

Cité par Sources :