A Double Exponential Lower Bound for the Distinct Vectors Problem
Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 4
Voir la notice de l'article provenant de la source Episciences
In the (binary) Distinct Vectors problem we are given a binary matrix A with pairwise different rows and want to select at most k columns such that, restricting the matrix to these columns, all rows are still pairwise different. A result by Froese et al. [JCSS] implies a 2^2^(O(k)) * poly(|A|)-time brute-force algorithm for Distinct Vectors. We show that this running time bound is essentially optimal by showing that there is a constant c such that the existence of an algorithm solving Distinct Vectors with running time 2^(O(2^(ck))) * poly(|A|) would contradict the Exponential Time Hypothesis.
@article{DMTCS_2020_22_4_a4,
author = {Pilipczuk, Marcin and Sorge, Manuel},
title = {A {Double} {Exponential} {Lower} {Bound} for the {Distinct} {Vectors} {Problem}},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2020-2021},
doi = {10.23638/DMTCS-22-4-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-7/}
}
TY - JOUR AU - Pilipczuk, Marcin AU - Sorge, Manuel TI - A Double Exponential Lower Bound for the Distinct Vectors Problem JO - Discrete mathematics & theoretical computer science PY - 2020-2021 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-7/ DO - 10.23638/DMTCS-22-4-7 LA - en ID - DMTCS_2020_22_4_a4 ER -
%0 Journal Article %A Pilipczuk, Marcin %A Sorge, Manuel %T A Double Exponential Lower Bound for the Distinct Vectors Problem %J Discrete mathematics & theoretical computer science %D 2020-2021 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-7/ %R 10.23638/DMTCS-22-4-7 %G en %F DMTCS_2020_22_4_a4
Pilipczuk, Marcin; Sorge, Manuel. A Double Exponential Lower Bound for the Distinct Vectors Problem. Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 4. doi: 10.23638/DMTCS-22-4-7
Cité par Sources :