Dissecting a square into congruent polygons
Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 1.

Voir la notice de l'article provenant de la source Episciences

We study the dissection of a square into congruent convex polygons. Yuan \emph{et al.} [Dissecting the square into five congruent parts, Discrete Math. \textbf{339} (2016) 288-298] asked whether, if the number of tiles is a prime number $\geq 3$, it is true that the tile must be a rectangle. We conjecture that the same conclusion still holds even if the number of tiles is an odd number $\geq 3$. Our conjecture has been confirmed for triangles in earlier works. We prove that the conjecture holds if either the tile is a convex $q$-gon with $q\geq 6$ or it is a right-angle trapezoid.
DOI : 10.23638/DMTCS-22-1-21
Classification : 05B45, 05C45, 52C20
@article{DMTCS_2020_22_1_a21,
     author = {Rao, Hui and Ren, Lei and Wang, Yang},
     title = {Dissecting a square into congruent polygons},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020-2021},
     doi = {10.23638/DMTCS-22-1-21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-21/}
}
TY  - JOUR
AU  - Rao, Hui
AU  - Ren, Lei
AU  - Wang, Yang
TI  - Dissecting a square into congruent polygons
JO  - Discrete mathematics & theoretical computer science
PY  - 2020-2021
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-21/
DO  - 10.23638/DMTCS-22-1-21
LA  - en
ID  - DMTCS_2020_22_1_a21
ER  - 
%0 Journal Article
%A Rao, Hui
%A Ren, Lei
%A Wang, Yang
%T Dissecting a square into congruent polygons
%J Discrete mathematics & theoretical computer science
%D 2020-2021
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-21/
%R 10.23638/DMTCS-22-1-21
%G en
%F DMTCS_2020_22_1_a21
Rao, Hui; Ren, Lei; Wang, Yang. Dissecting a square into congruent polygons. Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 1. doi : 10.23638/DMTCS-22-1-21. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-21/

Cité par Sources :