The super-connectivity of Johnson graphs
Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 1.

Voir la notice de l'article provenant de la source Episciences

For positive integers $n,k$ and $t$, the uniform subset graph $G(n, k, t)$ has all $k$-subsets of $\{1,2,\ldots, n\}$ as vertices and two $k$-subsets are joined by an edge if they intersect at exactly $t$ elements. The Johnson graph $J(n,k)$ corresponds to $G(n,k,k-1)$, that is, two vertices of $J(n,k)$ are adjacent if the intersection of the corresponding $k$-subsets has size $k-1$. A super vertex-cut of a connected graph is a set of vertices whose removal disconnects the graph without isolating a vertex and the super-connectivity is the size of a minimum super vertex-cut. In this work, we fully determine the super-connectivity of the family of Johnson graphs $J(n,k)$ for $n\geq k\geq 1$.
DOI : 10.23638/DMTCS-22-1-12
Classification : 05C40, 05C75
@article{DMTCS_2020_22_1_a10,
     author = {Ekinci, G\"ulnaz Boruzanl{\i} and Gauci, John Baptist},
     title = {The super-connectivity of {Johnson} graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020-2021},
     doi = {10.23638/DMTCS-22-1-12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-12/}
}
TY  - JOUR
AU  - Ekinci, Gülnaz Boruzanlı
AU  - Gauci, John Baptist
TI  - The super-connectivity of Johnson graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2020-2021
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-12/
DO  - 10.23638/DMTCS-22-1-12
LA  - en
ID  - DMTCS_2020_22_1_a10
ER  - 
%0 Journal Article
%A Ekinci, Gülnaz Boruzanlı
%A Gauci, John Baptist
%T The super-connectivity of Johnson graphs
%J Discrete mathematics & theoretical computer science
%D 2020-2021
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-12/
%R 10.23638/DMTCS-22-1-12
%G en
%F DMTCS_2020_22_1_a10
Ekinci, Gülnaz Boruzanlı; Gauci, John Baptist. The super-connectivity of Johnson graphs. Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 1. doi : 10.23638/DMTCS-22-1-12. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-12/

Cité par Sources :