Packing coloring of generalized Sierpinski graphs
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3
Cet article a éte moissonné depuis la source Episciences
The packing chromatic number $\chi_{\rho}(G)$ of a graph $G$ is the smallest integer $c$ such that the vertex set $V(G)$ can be partitioned into sets $X_1, . . . , X_c$, with the condition that vertices in $X_i$ have pairwise distance greater than $i$. In this paper, we consider the packing chromatic number of several families of Sierpinski-type graphs. We establish the packing chromatic numbers of generalized Sierpinski graphs $S^n_G$ where $G$ is a path or a cycle (with exception of a cycle of length five) as well as a connected graph of order four. Furthermore, we prove that the packing chromatic number in the family of Sierpinski-triangle graphs $ST_4^n$ is bounded from above by 20.
@article{DMTCS_2019_21_3_a6,
author = {Korze, Danilo and Vesel, Aleksander},
title = {Packing coloring of generalized {Sierpinski} graphs},
journal = {Discrete mathematics & theoretical computer science},
year = {2019},
volume = {21},
number = {3},
doi = {10.23638/DMTCS-21-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-7/}
}
TY - JOUR AU - Korze, Danilo AU - Vesel, Aleksander TI - Packing coloring of generalized Sierpinski graphs JO - Discrete mathematics & theoretical computer science PY - 2019 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-7/ DO - 10.23638/DMTCS-21-3-7 LA - en ID - DMTCS_2019_21_3_a6 ER -
Korze, Danilo; Vesel, Aleksander. Packing coloring of generalized Sierpinski graphs. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3. doi: 10.23638/DMTCS-21-3-7
Cité par Sources :