$K_{1,3}$-covering red and blue points in the plane
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3.

Voir la notice de l'article provenant de la source Episciences

We say that a finite set of red and blue points in the plane in general position can be $K_{1,3}$-covered if the set can be partitioned into subsets of size $4$, with $3$ points of one color and $1$ point of the other color, in such a way that, if at each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set of all segments has no crossings. We consider the following problem: Given a set $R$ of $r$ red points and a set $B$ of $b$ blue points in the plane in general position, how many points of $R\cup B$ can be $K_{1,3}$-covered? and we prove the following results: (1) If $r=3g+h$ and $b=3h+g$, for some non-negative integers $g$ and $h$, then there are point sets $R\cup B$, like $\{1,3\}$-equitable sets (i.e., $r=3b$ or $b=3r$) and linearly separable sets, that can be $K_{1,3}$-covered. (2) If $r=3g+h$, $b=3h+g$ and the points in $R\cup B$ are in convex position, then at least $r+b-4$ points can be $K_{1,3}$-covered, and this bound is tight. (3) There are arbitrarily large point sets $R\cup B$ in general position, with $r=b+1$, such that at most $r+b-5$ points can be $K_{1,3}$-covered. (4) If $b\le r\le 3b$, then at least $\frac{8}{9}(r+b-8)$ points of $R\cup B$ can be $K_{1,3}$-covered. For $r>3b$, there are too many red points and at least $r-3b$ of them will remain uncovered in any $K_{1,3}$-covering. Furthermore, in all the cases we provide efficient algorithms to compute the corresponding coverings.
@article{DMTCS_2019_21_3_a3,
     author = {\'Abrego, Bernardo M. and Fern\'andez-Merchant, Silvia and Kano, Mikio and Orden, David and P\'erez-Lantero, Pablo and Seara, Carlos and Tejel, Javier},
     title = {$K_{1,3}$-covering red and blue points in the plane},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2019},
     doi = {10.23638/DMTCS-21-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-6/}
}
TY  - JOUR
AU  - Ábrego, Bernardo M.
AU  - Fernández-Merchant, Silvia
AU  - Kano, Mikio
AU  - Orden, David
AU  - Pérez-Lantero, Pablo
AU  - Seara, Carlos
AU  - Tejel, Javier
TI  - $K_{1,3}$-covering red and blue points in the plane
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-6/
DO  - 10.23638/DMTCS-21-3-6
LA  - en
ID  - DMTCS_2019_21_3_a3
ER  - 
%0 Journal Article
%A Ábrego, Bernardo M.
%A Fernández-Merchant, Silvia
%A Kano, Mikio
%A Orden, David
%A Pérez-Lantero, Pablo
%A Seara, Carlos
%A Tejel, Javier
%T $K_{1,3}$-covering red and blue points in the plane
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-6/
%R 10.23638/DMTCS-21-3-6
%G en
%F DMTCS_2019_21_3_a3
Ábrego, Bernardo M.; Fernández-Merchant, Silvia; Kano, Mikio; Orden, David; Pérez-Lantero, Pablo; Seara, Carlos; Tejel, Javier. $K_{1,3}$-covering red and blue points in the plane. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3. doi : 10.23638/DMTCS-21-3-6. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-6/

Cité par Sources :