On the maximum number of minimum total dominating sets in forests
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3
Voir la notice de l'article provenant de la source Episciences
We propose the conjecture that every tree with order $n$ at least $2$ and total domination number $\gamma_t$ has at most $\left(\frac{n-\frac{\gamma_t}{2}}{\frac{\gamma_t}{2}}\right)^{\frac{\gamma_t}{2}}$ minimum total dominating sets. As a relaxation of this conjecture, we show that every forest $F$ with order $n$, no isolated vertex, and total domination number $\gamma_t$ has at most $\min\left\{\left(8\sqrt{e}\, \right)^{\gamma_t}\left(\frac{n-\frac{\gamma_t}{2}}{\frac{\gamma_t}{2}}\right)^{\frac{\gamma_t}{2}}, (1+\sqrt{2})^{n-\gamma_t},1.4865^n\right\}$ minimum total dominating sets.
@article{DMTCS_2019_21_3_a2,
author = {Henning, Michael A. and Mohr, Elena and Rautenbach, Dieter},
title = {On the maximum number of minimum total dominating sets in forests},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2019},
doi = {10.23638/DMTCS-21-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-3/}
}
TY - JOUR AU - Henning, Michael A. AU - Mohr, Elena AU - Rautenbach, Dieter TI - On the maximum number of minimum total dominating sets in forests JO - Discrete mathematics & theoretical computer science PY - 2019 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-3/ DO - 10.23638/DMTCS-21-3-3 LA - en ID - DMTCS_2019_21_3_a2 ER -
%0 Journal Article %A Henning, Michael A. %A Mohr, Elena %A Rautenbach, Dieter %T On the maximum number of minimum total dominating sets in forests %J Discrete mathematics & theoretical computer science %D 2019 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-3/ %R 10.23638/DMTCS-21-3-3 %G en %F DMTCS_2019_21_3_a2
Henning, Michael A.; Mohr, Elena; Rautenbach, Dieter. On the maximum number of minimum total dominating sets in forests. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3. doi: 10.23638/DMTCS-21-3-3
Cité par Sources :