Consecutive patterns in restricted permutations and involutions
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3
Voir la notice de l'article provenant de la source Episciences
It is well-known that the set $\mathbf I_n$ of involutions of the symmetric group $\mathbf S_n$ corresponds bijectively - by the Foata map $F$ - to the set of $n$-permutations that avoid the two vincular patterns $\underline{123},$ $\underline{132}.$ We consider a bijection $\Gamma$ from the set $\mathbf S_n$ to the set of histoires de Laguerre, namely, bicolored Motzkin paths with labelled steps, and study its properties when restricted to $\mathbf S_n(1\underline{23},1\underline{32}).$ In particular, we show that the set $\mathbf S_n(\underline{123},{132})$ of permutations that avoids the consecutive pattern $\underline{123}$ and the classical pattern $132$ corresponds via $\Gamma$ to the set of Motzkin paths, while its image under $F$ is the set of restricted involutions $\mathbf I_n(3412).$ We exploit these results to determine the joint distribution of the statistics des and inv over $\mathbf S_n(\underline{123},{132})$ and over $\mathbf I_n(3412).$ Moreover, we determine the distribution in these two sets of every consecutive pattern of length three. To this aim, we use a modified version of the well-known Goulden-Jacson cluster method.
@article{DMTCS_2019_21_3_a15,
author = {Barnabei, M. and Bonetti, F. and Castronuovo, N. and Silimbani, M.},
title = {Consecutive patterns in restricted permutations and involutions},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2019},
doi = {10.23638/DMTCS-21-3-21},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-21/}
}
TY - JOUR AU - Barnabei, M. AU - Bonetti, F. AU - Castronuovo, N. AU - Silimbani, M. TI - Consecutive patterns in restricted permutations and involutions JO - Discrete mathematics & theoretical computer science PY - 2019 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-21/ DO - 10.23638/DMTCS-21-3-21 LA - en ID - DMTCS_2019_21_3_a15 ER -
%0 Journal Article %A Barnabei, M. %A Bonetti, F. %A Castronuovo, N. %A Silimbani, M. %T Consecutive patterns in restricted permutations and involutions %J Discrete mathematics & theoretical computer science %D 2019 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-21/ %R 10.23638/DMTCS-21-3-21 %G en %F DMTCS_2019_21_3_a15
Barnabei, M.; Bonetti, F.; Castronuovo, N.; Silimbani, M. Consecutive patterns in restricted permutations and involutions. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3. doi: 10.23638/DMTCS-21-3-21
Cité par Sources :