Number of orbits of Discrete Interval Exchanges
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3.

Voir la notice de l'article provenant de la source Episciences

A new recursive function on discrete interval exchange transformation associated to a composition of length $r$, and the permutation $\sigma(i) = r -i +1$ is defined. Acting on composition $c$, this recursive function counts the number of orbits of the discrete interval exchange transformation associated to the composition $c$. Moreover, minimal discrete interval exchanges transformation i.e. the ones having only one orbit, are reduced to the composition which label the root of the Raney tree. Therefore, we describe a generalization of the Raney tree using our recursive function.
DOI : 10.23638/DMTCS-21-3-17
Classification : 05C05
@article{DMTCS_2019_21_3_a12,
     author = {Lapointe, M\'elodie},
     title = {Number of orbits of {Discrete} {Interval} {Exchanges}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2019},
     doi = {10.23638/DMTCS-21-3-17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-17/}
}
TY  - JOUR
AU  - Lapointe, Mélodie
TI  - Number of orbits of Discrete Interval Exchanges
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-17/
DO  - 10.23638/DMTCS-21-3-17
LA  - en
ID  - DMTCS_2019_21_3_a12
ER  - 
%0 Journal Article
%A Lapointe, Mélodie
%T Number of orbits of Discrete Interval Exchanges
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-17/
%R 10.23638/DMTCS-21-3-17
%G en
%F DMTCS_2019_21_3_a12
Lapointe, Mélodie. Number of orbits of Discrete Interval Exchanges. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3. doi : 10.23638/DMTCS-21-3-17. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-17/

Cité par Sources :