On-line algorithms for multiplication and division in real and complex numeration systems
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3.

Voir la notice de l'article provenant de la source Episciences

A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set $A$ is a finite set of digits including $0$. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac, is a mode of computation where operands and results flow through arithmetic units in a digit serial manner, starting with the most significant digit. In this paper, we first formulate a generalized version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac for the cases that $\beta$ is any real or complex number, and digits are real or complex. We then define the so-called OL Property, and show that if $(\beta, A)$ has the OL Property, then on-line multiplication and division are feasible by the Trivedi-Ercegovac algorithms. For a real base $\beta$ and a digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > |\beta|$. For a complex base $\beta$ and symmetric digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > \beta\overline{\beta} + |\beta + \overline{\beta}|$. Provided that addition and subtraction are realizable in parallel in the system $(\beta, A)$ and that preprocessing of the denominator is possible, our on-line algorithms for multiplication and division have linear time complexity. Three examples are presented in detail: base $\beta=\frac{3+\sqrt{5}}{2}$ with digits $A=\{-1,0,1\}$; base $\beta=2i$ with digits $A = \{-2,-1, 0,1,2\}$; and base $\beta = -\frac{3}{2} + i \frac{\sqrt{3}}{2} = -1 + \omega$, where $\omega = \exp{\frac{2i\pi}{3}}$, with digits $A = \{0, \pm 1, \pm \omega, \pm \omega^2 \}$.
@article{DMTCS_2019_21_3_a19,
     author = {Frougny, Christiane and Pavelka, Marta and Pelantova, Edita and Svobodova, Milena},
     title = {On-line algorithms for multiplication and division in real and complex numeration systems},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2019},
     doi = {10.23638/DMTCS-21-3-14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-14/}
}
TY  - JOUR
AU  - Frougny, Christiane
AU  - Pavelka, Marta
AU  - Pelantova, Edita
AU  - Svobodova, Milena
TI  - On-line algorithms for multiplication and division in real and complex numeration systems
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-14/
DO  - 10.23638/DMTCS-21-3-14
LA  - en
ID  - DMTCS_2019_21_3_a19
ER  - 
%0 Journal Article
%A Frougny, Christiane
%A Pavelka, Marta
%A Pelantova, Edita
%A Svobodova, Milena
%T On-line algorithms for multiplication and division in real and complex numeration systems
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-14/
%R 10.23638/DMTCS-21-3-14
%G en
%F DMTCS_2019_21_3_a19
Frougny, Christiane; Pavelka, Marta; Pelantova, Edita; Svobodova, Milena. On-line algorithms for multiplication and division in real and complex numeration systems. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3. doi : 10.23638/DMTCS-21-3-14. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-14/

Cité par Sources :