Uniquely-Wilf classes
Discrete mathematics & theoretical computer science, Permutation Patters 2018, Tome 21 (2019) no. 2.

Voir la notice de l'article provenant de la source Episciences

Two permutations in a class are Wilf-equivalent if, for every size, $n$, the number of permutations in the class of size $n$ containing each of them is the same. Those infinite classes that have only one equivalence class in each size for this relation are characterised provided either that they avoid at least one permutation of size 3, or at least three permutations of size 4.
@article{DMTCS_2019_21_2_a4,
     author = {Albert, Michael and Li, Jinge},
     title = {Uniquely-Wilf classes},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     doi = {10.23638/DMTCS-21-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-7/}
}
TY  - JOUR
AU  - Albert, Michael
AU  - Li, Jinge
TI  - Uniquely-Wilf classes
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-7/
DO  - 10.23638/DMTCS-21-2-7
LA  - en
ID  - DMTCS_2019_21_2_a4
ER  - 
%0 Journal Article
%A Albert, Michael
%A Li, Jinge
%T Uniquely-Wilf classes
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-7/
%R 10.23638/DMTCS-21-2-7
%G en
%F DMTCS_2019_21_2_a4
Albert, Michael; Li, Jinge. Uniquely-Wilf classes. Discrete mathematics & theoretical computer science, Permutation Patters 2018, Tome 21 (2019) no. 2. doi : 10.23638/DMTCS-21-2-7. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-7/

Cité par Sources :