The 2-domination and Roman domination numbers of grid graphs
Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1
Voir la notice de l'article provenant de la source Episciences
We investigate the 2-domination number for grid graphs, that is the size of a smallest set $D$ of vertices of the grid such that each vertex of the grid belongs to $D$ or has at least two neighbours in $D$. We give a closed formula giving the 2-domination number of any $n \!\times\! m$ grid, hereby confirming the results found by Lu and Xu, and Shaheen et al. for $n \leq 4$ and slightly correct the value of Shaheen et al. for $n = 5$. The proof relies on some dynamic programming algorithms, using transfer matrices in (min,+)-algebra. We also apply the method to solve the Roman domination problem on grid graphs.
@article{DMTCS_2019_21_1_a5,
author = {Rao, Micha\"el and Talon, Alexandre},
title = {The 2-domination and {Roman} domination numbers of grid graphs},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2019},
doi = {10.23638/DMTCS-21-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-9/}
}
TY - JOUR AU - Rao, Michaël AU - Talon, Alexandre TI - The 2-domination and Roman domination numbers of grid graphs JO - Discrete mathematics & theoretical computer science PY - 2019 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-9/ DO - 10.23638/DMTCS-21-1-9 LA - en ID - DMTCS_2019_21_1_a5 ER -
%0 Journal Article %A Rao, Michaël %A Talon, Alexandre %T The 2-domination and Roman domination numbers of grid graphs %J Discrete mathematics & theoretical computer science %D 2019 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-9/ %R 10.23638/DMTCS-21-1-9 %G en %F DMTCS_2019_21_1_a5
Rao, Michaël; Talon, Alexandre. The 2-domination and Roman domination numbers of grid graphs. Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1. doi: 10.23638/DMTCS-21-1-9
Cité par Sources :