Sigma Partitioning: Complexity and Random Graphs
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2.

Voir la notice de l'article provenant de la source Episciences

A $\textit{sigma partitioning}$ of a graph $G$ is a partition of the vertices into sets $P_1, \ldots, P_k$ such that for every two adjacent vertices $u$ and $v$ there is an index $i$ such that $u$ and $v$ have different numbers of neighbors in $P_i$. The $\textit{ sigma number}$ of a graph $G$, denoted by $\sigma(G)$, is the minimum number $k$ such that $ G $ has a sigma partitioning $P_1, \ldots, P_k$. Also, a $\textit{ lucky labeling}$ of a graph $G$ is a function $ \ell :V(G) \rightarrow \mathbb{N}$, such that for every two adjacent vertices $ v $ and $ u$ of $ G $, $ \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) $ ($ x \sim y $ means that $ x $ and $y$ are adjacent). The $\textit{ lucky number}$ of $ G $, denoted by $\eta(G)$, is the minimum number $k $ such that $ G $ has a lucky labeling $ \ell :V(G) \rightarrow \mathbb{N}_k$. It was conjectured in [Inform. Process. Lett., 112(4):109--112, 2012] that it is $ \mathbf{NP} $-complete to decide whether $ \eta(G)=2$ for a given 3-regular graph $G$. In this work, we prove this conjecture. Among other results, we give an upper bound of five for the sigma number of a uniformly random graph.
@article{DMTCS_2018_20_2_a17,
     author = {Dehghan, Ali and Sadeghi, Mohammad-Reza and Ahadi, Arash},
     title = {Sigma {Partitioning:} {Complexity} and {Random} {Graphs}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     doi = {10.23638/DMTCS-20-2-19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-19/}
}
TY  - JOUR
AU  - Dehghan, Ali
AU  - Sadeghi, Mohammad-Reza
AU  - Ahadi, Arash
TI  - Sigma Partitioning: Complexity and Random Graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2018
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-19/
DO  - 10.23638/DMTCS-20-2-19
LA  - en
ID  - DMTCS_2018_20_2_a17
ER  - 
%0 Journal Article
%A Dehghan, Ali
%A Sadeghi, Mohammad-Reza
%A Ahadi, Arash
%T Sigma Partitioning: Complexity and Random Graphs
%J Discrete mathematics & theoretical computer science
%D 2018
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-19/
%R 10.23638/DMTCS-20-2-19
%G en
%F DMTCS_2018_20_2_a17
Dehghan, Ali; Sadeghi, Mohammad-Reza; Ahadi, Arash. Sigma Partitioning: Complexity and Random Graphs. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2. doi : 10.23638/DMTCS-20-2-19. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-19/

Cité par Sources :