Sigma Partitioning: Complexity and Random Graphs
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2
Voir la notice de l'article provenant de la source Episciences
A $\textit{sigma partitioning}$ of a graph $G$ is a partition of the vertices into sets $P_1, \ldots, P_k$ such that for every two adjacent vertices $u$ and $v$ there is an index $i$ such that $u$ and $v$ have different numbers of neighbors in $P_i$. The $\textit{ sigma number}$ of a graph $G$, denoted by $\sigma(G)$, is the minimum number $k$ such that $ G $ has a sigma partitioning $P_1, \ldots, P_k$. Also, a $\textit{ lucky labeling}$ of a graph $G$ is a function $ \ell :V(G) \rightarrow \mathbb{N}$, such that for every two adjacent vertices $ v $ and $ u$ of $ G $, $ \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) $ ($ x \sim y $ means that $ x $ and $y$ are adjacent). The $\textit{ lucky number}$ of $ G $, denoted by $\eta(G)$, is the minimum number $k $ such that $ G $ has a lucky labeling $ \ell :V(G) \rightarrow \mathbb{N}_k$. It was conjectured in [Inform. Process. Lett., 112(4):109--112, 2012] that it is $ \mathbf{NP} $-complete to decide whether $ \eta(G)=2$ for a given 3-regular graph $G$. In this work, we prove this conjecture. Among other results, we give an upper bound of five for the sigma number of a uniformly random graph.
@article{DMTCS_2018_20_2_a17,
author = {Dehghan, Ali and Sadeghi, Mohammad-Reza and Ahadi, Arash},
title = {Sigma {Partitioning:} {Complexity} and {Random} {Graphs}},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2018},
doi = {10.23638/DMTCS-20-2-19},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-19/}
}
TY - JOUR AU - Dehghan, Ali AU - Sadeghi, Mohammad-Reza AU - Ahadi, Arash TI - Sigma Partitioning: Complexity and Random Graphs JO - Discrete mathematics & theoretical computer science PY - 2018 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-19/ DO - 10.23638/DMTCS-20-2-19 LA - en ID - DMTCS_2018_20_2_a17 ER -
%0 Journal Article %A Dehghan, Ali %A Sadeghi, Mohammad-Reza %A Ahadi, Arash %T Sigma Partitioning: Complexity and Random Graphs %J Discrete mathematics & theoretical computer science %D 2018 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-19/ %R 10.23638/DMTCS-20-2-19 %G en %F DMTCS_2018_20_2_a17
Dehghan, Ali; Sadeghi, Mohammad-Reza; Ahadi, Arash. Sigma Partitioning: Complexity and Random Graphs. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2. doi: 10.23638/DMTCS-20-2-19
Cité par Sources :