On a Class of Graphs with Large Total Domination Number
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 1
Voir la notice de l'article provenant de la source Episciences
Let $\gamma(G)$ and $\gamma_t(G)$ denote the domination number and the total domination number, respectively, of a graph $G$ with no isolated vertices. It is well-known that $\gamma_t(G) \leq 2\gamma(G)$. We provide a characterization of a large family of graphs (including chordal graphs) satisfying $\gamma_t(G)= 2\gamma(G)$, strictly generalizing the results of Henning (2001) and Hou et al. (2010), and partially answering an open question of Henning (2009).
@article{DMTCS_2018_20_1_a19,
author = {Bahad{\i}r, Selim and G\"oz\"upek, Didem},
title = {On a {Class} of {Graphs} with {Large} {Total} {Domination} {Number}},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2018},
doi = {10.23638/DMTCS-20-1-23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-23/}
}
TY - JOUR AU - Bahadır, Selim AU - Gözüpek, Didem TI - On a Class of Graphs with Large Total Domination Number JO - Discrete mathematics & theoretical computer science PY - 2018 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-23/ DO - 10.23638/DMTCS-20-1-23 LA - en ID - DMTCS_2018_20_1_a19 ER -
%0 Journal Article %A Bahadır, Selim %A Gözüpek, Didem %T On a Class of Graphs with Large Total Domination Number %J Discrete mathematics & theoretical computer science %D 2018 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-23/ %R 10.23638/DMTCS-20-1-23 %G en %F DMTCS_2018_20_1_a19
Bahadır, Selim; Gözüpek, Didem. On a Class of Graphs with Large Total Domination Number. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 1. doi: 10.23638/DMTCS-20-1-23
Cité par Sources :