On neighbour sum-distinguishing $\{0,1\}$-edge-weightings of bipartite graphs
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 1.

Voir la notice de l'article provenant de la source Episciences

Let $S$ be a set of integers. A graph G is said to have the S-property if there exists an S-edge-weighting $w : E(G) \rightarrow S$ such that any two adjacent vertices have different sums of incident edge-weights. In this paper we characterise all bridgeless bipartite graphs and all trees without the $\{0,1\}$-property. In particular this problem belongs to P for these graphs while it is NP-complete for all graphs.
@article{DMTCS_2018_20_1_a22,
     author = {Lyngsie, Kasper Szabo},
     title = {On neighbour sum-distinguishing $\{0,1\}$-edge-weightings of bipartite graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.23638/DMTCS-20-1-21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-21/}
}
TY  - JOUR
AU  - Lyngsie, Kasper Szabo
TI  - On neighbour sum-distinguishing $\{0,1\}$-edge-weightings of bipartite graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2018
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-21/
DO  - 10.23638/DMTCS-20-1-21
LA  - en
ID  - DMTCS_2018_20_1_a22
ER  - 
%0 Journal Article
%A Lyngsie, Kasper Szabo
%T On neighbour sum-distinguishing $\{0,1\}$-edge-weightings of bipartite graphs
%J Discrete mathematics & theoretical computer science
%D 2018
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-21/
%R 10.23638/DMTCS-20-1-21
%G en
%F DMTCS_2018_20_1_a22
Lyngsie, Kasper Szabo. On neighbour sum-distinguishing $\{0,1\}$-edge-weightings of bipartite graphs. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 1. doi : 10.23638/DMTCS-20-1-21. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-21/

Cité par Sources :