Proof of a local antimagic conjecture
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 1
Voir la notice de l'article provenant de la source Episciences
An antimagic labelling of a graph $G$ is a bijection $f:E(G)\to\{1,\ldots,E(G)\}$ such that the sums $S_v=\sum_{e\ni v}f(e)$ distinguish all vertices. A well-known conjecture of Hartsfield and Ringel (1994) is that every connected graph other than $K_2$ admits an antimagic labelling. Recently, two sets of authors (Arumugam, Premalatha, Ba\v{c}a \& Semani\v{c}ov\'a-Fe\v{n}ov\v{c}\'ikov\'a (2017), and Bensmail, Senhaji \& Lyngsie (2017)) independently introduced the weaker notion of a local antimagic labelling, where only adjacent vertices must be distinguished. Both sets of authors conjectured that any connected graph other than $K_2$ admits a local antimagic labelling. We prove this latter conjecture using the probabilistic method. Thus the parameter of local antimagic chromatic number, introduced by Arumugam et al., is well-defined for every connected graph other than $K_2$ .
@article{DMTCS_2018_20_1_a20,
author = {Haslegrave, John},
title = {Proof of a local antimagic conjecture},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2018},
doi = {10.23638/DMTCS-20-1-18},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-18/}
}
TY - JOUR AU - Haslegrave, John TI - Proof of a local antimagic conjecture JO - Discrete mathematics & theoretical computer science PY - 2018 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-18/ DO - 10.23638/DMTCS-20-1-18 LA - en ID - DMTCS_2018_20_1_a20 ER -
Haslegrave, John. Proof of a local antimagic conjecture. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 1. doi: 10.23638/DMTCS-20-1-18
Cité par Sources :