Depth, Highness and DNR degrees
Discrete mathematics & theoretical computer science, FCT '15, Tome 19 (2017-2018) no. 4
Voir la notice de l'article provenant de la source Episciences
We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of O(1)-deepK, O(1)-deepC , order-deep K and order-deep C sequences. Our main results are that Martin-Loef random sets are not order-deepC , that every many-one degree contains a set which is not O(1)-deepC , that O(1)-deepC sets and order-deepK sets have high or DNR Turing degree and that no K-trival set is O(1)-deepK.
@article{DMTCS_2017_19_4_a1,
author = {Moser, Philippe and Stephan, Frank},
title = {Depth, {Highness} and {DNR} degrees},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2017-2018},
doi = {10.23638/DMTCS-19-4-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-4-2/}
}
TY - JOUR AU - Moser, Philippe AU - Stephan, Frank TI - Depth, Highness and DNR degrees JO - Discrete mathematics & theoretical computer science PY - 2017-2018 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-4-2/ DO - 10.23638/DMTCS-19-4-2 LA - en ID - DMTCS_2017_19_4_a1 ER -
Moser, Philippe; Stephan, Frank. Depth, Highness and DNR degrees. Discrete mathematics & theoretical computer science, FCT '15, Tome 19 (2017-2018) no. 4. doi: 10.23638/DMTCS-19-4-2
Cité par Sources :