Depth, Highness and DNR degrees
Discrete mathematics & theoretical computer science, FCT '15, Tome 19 (2017-2018) no. 4.

Voir la notice de l'article provenant de la source Episciences

We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of O(1)-deepK, O(1)-deepC , order-deep K and order-deep C sequences. Our main results are that Martin-Loef random sets are not order-deepC , that every many-one degree contains a set which is not O(1)-deepC , that O(1)-deepC sets and order-deepK sets have high or DNR Turing degree and that no K-trival set is O(1)-deepK.
@article{DMTCS_2017_19_4_a1,
     author = {Moser, Philippe and Stephan, Frank},
     title = {Depth, {Highness} and {DNR} degrees},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-4-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-4-2/}
}
TY  - JOUR
AU  - Moser, Philippe
AU  - Stephan, Frank
TI  - Depth, Highness and DNR degrees
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-4-2/
DO  - 10.23638/DMTCS-19-4-2
LA  - en
ID  - DMTCS_2017_19_4_a1
ER  - 
%0 Journal Article
%A Moser, Philippe
%A Stephan, Frank
%T Depth, Highness and DNR degrees
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-4-2/
%R 10.23638/DMTCS-19-4-2
%G en
%F DMTCS_2017_19_4_a1
Moser, Philippe; Stephan, Frank. Depth, Highness and DNR degrees. Discrete mathematics & theoretical computer science, FCT '15, Tome 19 (2017-2018) no. 4. doi : 10.23638/DMTCS-19-4-2. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-4-2/

Cité par Sources :