Binary Codes and Period-2 Orbits of Sequential Dynamical Systems
Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 3
Cet article a éte moissonné depuis la source Episciences
Let $[K_n,f,\pi]$ be the (global) SDS map of a sequential dynamical system (SDS) defined over the complete graph $K_n$ using the update order $\pi\in S_n$ in which all vertex functions are equal to the same function $f\colon\mathbb F_2^n\to\mathbb F_2^n$. Let $\eta_n$ denote the maximum number of periodic orbits of period $2$ that an SDS map of the form $[K_n,f,\pi]$ can have. We show that $\eta_n$ is equal to the maximum number of codewords in a binary code of length $n-1$ with minimum distance at least $3$. This result is significant because it represents the first interpretation of this fascinating coding-theoretic sequence other than its original definition.
@article{DMTCS_2017_19_3_a6,
author = {Defant, Colin},
title = {Binary {Codes} and {Period-2} {Orbits} of {Sequential} {Dynamical} {Systems}},
journal = {Discrete mathematics & theoretical computer science},
year = {2017-2018},
volume = {19},
number = {3},
doi = {10.23638/DMTCS-19-3-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-10/}
}
TY - JOUR AU - Defant, Colin TI - Binary Codes and Period-2 Orbits of Sequential Dynamical Systems JO - Discrete mathematics & theoretical computer science PY - 2017-2018 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-10/ DO - 10.23638/DMTCS-19-3-10 LA - en ID - DMTCS_2017_19_3_a6 ER -
Defant, Colin. Binary Codes and Period-2 Orbits of Sequential Dynamical Systems. Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 3. doi: 10.23638/DMTCS-19-3-10
Cité par Sources :