Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2018_19_2_a6, author = {Beaton, Nicholas R and Conway, Andrew R and Guttmann, Anthony J}, title = {On consecutive pattern-avoiding permutations of length 4, 5 and beyond}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2017-2018}, doi = {10.23638/DMTCS-19-2-8}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-8/} }
TY - JOUR AU - Beaton, Nicholas R AU - Conway, Andrew R AU - Guttmann, Anthony J TI - On consecutive pattern-avoiding permutations of length 4, 5 and beyond JO - Discrete mathematics & theoretical computer science PY - 2017-2018 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-8/ DO - 10.23638/DMTCS-19-2-8 LA - en ID - DMTCS_2018_19_2_a6 ER -
%0 Journal Article %A Beaton, Nicholas R %A Conway, Andrew R %A Guttmann, Anthony J %T On consecutive pattern-avoiding permutations of length 4, 5 and beyond %J Discrete mathematics & theoretical computer science %D 2017-2018 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-8/ %R 10.23638/DMTCS-19-2-8 %G en %F DMTCS_2018_19_2_a6
Beaton, Nicholas R; Conway, Andrew R; Guttmann, Anthony J. On consecutive pattern-avoiding permutations of length 4, 5 and beyond. Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2. doi : 10.23638/DMTCS-19-2-8. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-8/
Cité par Sources :