Equivalence classes of mesh patterns with a dominating pattern
Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2.

Voir la notice de l'article provenant de la source Episciences

Two mesh patterns are coincident if they are avoided by the same set of permutations, and are Wilf-equivalent if they have the same number of avoiders of each length. We provide sufficient conditions for coincidence of mesh patterns, when only permutations also avoiding a longer classical pattern are considered. Using these conditions we completely classify coincidences between families containing a mesh pattern of length 2 and a classical pattern of length 3. Furthermore, we completely Wilf-classify mesh patterns of length 2 inside the class of 231-avoiding permutations.
@article{DMTCS_2018_19_2_a5,
     author = {Tannock, Murray and Ulfarsson, Henning},
     title = {Equivalence classes of mesh patterns with a dominating pattern},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-6/}
}
TY  - JOUR
AU  - Tannock, Murray
AU  - Ulfarsson, Henning
TI  - Equivalence classes of mesh patterns with a dominating pattern
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-6/
DO  - 10.23638/DMTCS-19-2-6
LA  - en
ID  - DMTCS_2018_19_2_a5
ER  - 
%0 Journal Article
%A Tannock, Murray
%A Ulfarsson, Henning
%T Equivalence classes of mesh patterns with a dominating pattern
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-6/
%R 10.23638/DMTCS-19-2-6
%G en
%F DMTCS_2018_19_2_a5
Tannock, Murray; Ulfarsson, Henning. Equivalence classes of mesh patterns with a dominating pattern. Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2. doi : 10.23638/DMTCS-19-2-6. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-6/

Cité par Sources :