Equivalence classes of mesh patterns with a dominating pattern
Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2
Voir la notice de l'article provenant de la source Episciences
Two mesh patterns are coincident if they are avoided by the same set of permutations, and are Wilf-equivalent if they have the same number of avoiders of each length. We provide sufficient conditions for coincidence of mesh patterns, when only permutations also avoiding a longer classical pattern are considered. Using these conditions we completely classify coincidences between families containing a mesh pattern of length 2 and a classical pattern of length 3. Furthermore, we completely Wilf-classify mesh patterns of length 2 inside the class of 231-avoiding permutations.
@article{DMTCS_2018_19_2_a5,
author = {Tannock, Murray and Ulfarsson, Henning},
title = {Equivalence classes of mesh patterns with a dominating pattern},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2017-2018},
doi = {10.23638/DMTCS-19-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-6/}
}
TY - JOUR AU - Tannock, Murray AU - Ulfarsson, Henning TI - Equivalence classes of mesh patterns with a dominating pattern JO - Discrete mathematics & theoretical computer science PY - 2017-2018 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-6/ DO - 10.23638/DMTCS-19-2-6 LA - en ID - DMTCS_2018_19_2_a5 ER -
%0 Journal Article %A Tannock, Murray %A Ulfarsson, Henning %T Equivalence classes of mesh patterns with a dominating pattern %J Discrete mathematics & theoretical computer science %D 2017-2018 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-6/ %R 10.23638/DMTCS-19-2-6 %G en %F DMTCS_2018_19_2_a5
Tannock, Murray; Ulfarsson, Henning. Equivalence classes of mesh patterns with a dominating pattern. Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2. doi: 10.23638/DMTCS-19-2-6
Cité par Sources :