Splittability and 1-amalgamability of permutation classes
Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2.

Voir la notice de l'article provenant de la source Episciences

A permutation class $C$ is splittable if it is contained in a merge of two of its proper subclasses, and it is 1-amalgamable if given two permutations $\sigma$ and $\tau$ in $C$, each with a marked element, we can find a permutation $\pi$ in $C$ containing both $\sigma$ and $\tau$ such that the two marked elements coincide. It was previously shown that unsplittability implies 1-amalgamability. We prove that unsplittability and 1-amalgamability are not equivalent properties of permutation classes by showing that the class $Av(1423, 1342)$ is both splittable and 1-amalgamable. Our construction is based on the concept of LR-inflations, which we introduce here and which may be of independent interest.
@article{DMTCS_2018_19_2_a0,
     author = {Jel{\'\i}nek, V{\'\i}t and Opler, Michal},
     title = {Splittability and 1-amalgamability of permutation classes},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-4/}
}
TY  - JOUR
AU  - Jelínek, Vít
AU  - Opler, Michal
TI  - Splittability and 1-amalgamability of permutation classes
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-4/
DO  - 10.23638/DMTCS-19-2-4
LA  - en
ID  - DMTCS_2018_19_2_a0
ER  - 
%0 Journal Article
%A Jelínek, Vít
%A Opler, Michal
%T Splittability and 1-amalgamability of permutation classes
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-4/
%R 10.23638/DMTCS-19-2-4
%G en
%F DMTCS_2018_19_2_a0
Jelínek, Vít; Opler, Michal. Splittability and 1-amalgamability of permutation classes. Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2. doi : 10.23638/DMTCS-19-2-4. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-4/

Cité par Sources :