The Existence of Planar Hypotraceable Oriented Graphs
Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 1.

Voir la notice de l'article provenant de la source Episciences

A digraph is \emph{traceable} if it has a path that visits every vertex. A digraph $D$ is \emph{hypotraceable} if $D$ is not traceable but $D-v$ is traceable for every vertex $v\in V(D)$. It is known that there exists a planar hypotraceable digraph of order $n$ for every $n\geq 7$, but no examples of planar hypotraceable oriented graphs (digraphs without 2-cycles) have yet appeared in the literature. We show that there exists a planar hypotraceable oriented graph of order $n$ for every even $n \geq 10$, with the possible exception of $n = 14$.
@article{DMTCS_2017_19_1_a2,
     author = {van Aardt, Susan and Burger, Alewyn Petrus and Frick, Marietjie},
     title = {The {Existence} of {Planar} {Hypotraceable} {Oriented} {Graphs}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-4/}
}
TY  - JOUR
AU  - van Aardt, Susan
AU  - Burger, Alewyn Petrus
AU  - Frick, Marietjie
TI  - The Existence of Planar Hypotraceable Oriented Graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-4/
DO  - 10.23638/DMTCS-19-1-4
LA  - en
ID  - DMTCS_2017_19_1_a2
ER  - 
%0 Journal Article
%A van Aardt, Susan
%A Burger, Alewyn Petrus
%A Frick, Marietjie
%T The Existence of Planar Hypotraceable Oriented Graphs
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-4/
%R 10.23638/DMTCS-19-1-4
%G en
%F DMTCS_2017_19_1_a2
van Aardt, Susan; Burger, Alewyn Petrus; Frick, Marietjie. The Existence of Planar Hypotraceable Oriented Graphs. Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 1. doi : 10.23638/DMTCS-19-1-4. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-4/

Cité par Sources :