Nonrepetitive edge-colorings of trees
Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 1.

Voir la notice de l'article provenant de la source Episciences

A repetition is a sequence of symbols in which the first half is the same as the second half. An edge-coloring of a graph is repetition-free or nonrepetitive if there is no path with a color pattern that is a repetition. The minimum number of colors so that a graph has a nonrepetitive edge-coloring is called its Thue edge-chromatic number. We improve on the best known general upper bound of $4\Delta-4$ for the Thue edge-chromatic number of trees of maximum degree $\Delta$ due to Alon, Grytczuk, Ha{\l}uszczak and Riordan (2002) by providing a simple nonrepetitive edge-coloring with $3\Delta-2$ colors.
@article{DMTCS_2017_19_1_a17,
     author = {K\"undgen, A. and Talbot, T.},
     title = {Nonrepetitive edge-colorings of trees},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-1-18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-18/}
}
TY  - JOUR
AU  - Kündgen, A.
AU  - Talbot, T.
TI  - Nonrepetitive edge-colorings of trees
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-18/
DO  - 10.23638/DMTCS-19-1-18
LA  - en
ID  - DMTCS_2017_19_1_a17
ER  - 
%0 Journal Article
%A Kündgen, A.
%A Talbot, T.
%T Nonrepetitive edge-colorings of trees
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-18/
%R 10.23638/DMTCS-19-1-18
%G en
%F DMTCS_2017_19_1_a17
Kündgen, A.; Talbot, T. Nonrepetitive edge-colorings of trees. Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 1. doi : 10.23638/DMTCS-19-1-18. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-18/

Cité par Sources :