On universal partial words
Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 1
Voir la notice de l'article provenant de la source Episciences
A universal word for a finite alphabet $A$ and some integer $n\geq 1$ is a word over $A$ such that every word in $A^n$ appears exactly once as a subword (cyclically or linearly). It is well-known and easy to prove that universal words exist for any $A$ and $n$. In this work we initiate the systematic study of universal partial words. These are words that in addition to the letters from $A$ may contain an arbitrary number of occurrences of a special `joker' symbol $\Diamond\notin A$, which can be substituted by any symbol from $A$. For example, $u=0\Diamond 011100$ is a linear partial word for the binary alphabet $A=\{0,1\}$ and for $n=3$ (e.g., the first three letters of $u$ yield the subwords $000$ and $010$). We present results on the existence and non-existence of linear and cyclic universal partial words in different situations (depending on the number of $\Diamond$s and their positions), including various explicit constructions. We also provide numerous examples of universal partial words that we found with the help of a computer.
@article{DMTCS_2017_19_1_a13,
author = {Chen, Herman Z. Q. and Kitaev, Sergey and M\"utze, Torsten and Sun, Brian Y.},
title = {On universal partial words},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2017-2018},
doi = {10.23638/DMTCS-19-1-16},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-16/}
}
TY - JOUR AU - Chen, Herman Z. Q. AU - Kitaev, Sergey AU - Mütze, Torsten AU - Sun, Brian Y. TI - On universal partial words JO - Discrete mathematics & theoretical computer science PY - 2017-2018 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-16/ DO - 10.23638/DMTCS-19-1-16 LA - en ID - DMTCS_2017_19_1_a13 ER -
%0 Journal Article %A Chen, Herman Z. Q. %A Kitaev, Sergey %A Mütze, Torsten %A Sun, Brian Y. %T On universal partial words %J Discrete mathematics & theoretical computer science %D 2017-2018 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-16/ %R 10.23638/DMTCS-19-1-16 %G en %F DMTCS_2017_19_1_a13
Chen, Herman Z. Q.; Kitaev, Sergey; Mütze, Torsten; Sun, Brian Y. On universal partial words. Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 1. doi: 10.23638/DMTCS-19-1-16
Cité par Sources :