Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko--Fomenko conjecture
Theoretical and applied mechanics, Tome 43 (2016) no. 2, p. 145

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Mishchenko--Fomenko conjecture says that for each real or complex finite-dimensional Lie algebra $\mathfrak g$ there exists a complete set of commuting polynomials on its dual space $\mathfrak g^*$. In terms of the theory of integrable Hamiltonian systems this means that the dual space $\mathfrak g^*$ endowed with the standard Lie--Poisson bracket admits polynomial integrable Hamiltonian systems. This conjecture was proved by S. T.~Sadetov in 2003. Following his idea, we give an explicit geometric construction for commuting polynomials on $\mathfrak g^*$ and consider some examples.
DOI : 10.2298/TAM161111012B
Classification : 37J35, 17B80, 70H06, 53D17, 17B63
Keywords: Poisson-Lie bracket, complete integrability, field extension, Mischenko-Fomenko conjecture, chains of subalgebras, shifting of argument
@article{10_2298_TAM161111012B,
     author = {Alexey V. Bolsinov},
     title = {Complete commutative subalgebras in polynomial {Poisson} algebras: a proof of the {Mischenko--Fomenko} conjecture},
     journal = {Theoretical and applied mechanics},
     pages = {145 },
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2016},
     doi = {10.2298/TAM161111012B},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/TAM161111012B/}
}
TY  - JOUR
AU  - Alexey V. Bolsinov
TI  - Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko--Fomenko conjecture
JO  - Theoretical and applied mechanics
PY  - 2016
SP  - 145 
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/TAM161111012B/
DO  - 10.2298/TAM161111012B
LA  - en
ID  - 10_2298_TAM161111012B
ER  - 
%0 Journal Article
%A Alexey V. Bolsinov
%T Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko--Fomenko conjecture
%J Theoretical and applied mechanics
%D 2016
%P 145 
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/TAM161111012B/
%R 10.2298/TAM161111012B
%G en
%F 10_2298_TAM161111012B
Alexey V. Bolsinov. Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko--Fomenko conjecture. Theoretical and applied mechanics, Tome 43 (2016) no. 2, p. 145 . doi: 10.2298/TAM161111012B

Cité par Sources :