Ninety years of Duffing's equation
Theoretical and applied mechanics, Tome 40 (2013) no. 1, p. 49 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the paper the origin of the so named ‘Duffing’s equation’ is shown. The author’s generalization of the equation, her published papers dealing with Duffing’s equation and some of the solution methods are presented. Three characteristic approximate solution procedures based on the exact solution of the strong cubic Duffing’s equation are shown. Using the Jacobi elliptic functions the elliptic-Krylov-Bogolubov (EKB), the homotopy perturbation and the elliptic-Galerkin (EG) methods are described. The methods are compared. The advantages and the disadvantages of the methods are discussed.
DOI : 10.2298/TAM1301049C
Classification : 01A85 34A34
Keywords: Duffing’s equation, elliptic-Krylov-Bogolubov method, homotopy perturbation method, elliptic-Galerkin method
@article{10_2298_TAM1301049C,
     author = {Livija Cveti\'canin},
     title = {Ninety years of {Duffing's} equation},
     journal = {Theoretical and applied mechanics},
     pages = {49 },
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2013},
     doi = {10.2298/TAM1301049C},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/TAM1301049C/}
}
TY  - JOUR
AU  - Livija Cvetićanin
TI  - Ninety years of Duffing's equation
JO  - Theoretical and applied mechanics
PY  - 2013
SP  - 49 
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/TAM1301049C/
DO  - 10.2298/TAM1301049C
LA  - en
ID  - 10_2298_TAM1301049C
ER  - 
%0 Journal Article
%A Livija Cvetićanin
%T Ninety years of Duffing's equation
%J Theoretical and applied mechanics
%D 2013
%P 49 
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/TAM1301049C/
%R 10.2298/TAM1301049C
%G en
%F 10_2298_TAM1301049C
Livija Cvetićanin. Ninety years of Duffing's equation. Theoretical and applied mechanics, Tome 40 (2013) no. 1, p. 49 . doi : 10.2298/TAM1301049C. http://geodesic.mathdoc.fr/articles/10.2298/TAM1301049C/

Cité par Sources :