A Convergence Theorem of Multi-Step Iterative Scheme for Nonlinear Maps
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 281 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $K$ be a nonempty closed convex subset of a real Banach space $X$, $T:K\to K$ a nearly uniformly $L$-Lipschitzian (with sequence $\{r_n\}$) asymptotically generalized $\Phi$-hemicontractive mapping (with sequence ${k_n}\subset [1,\infty)$, $\lim_{n\to\infty} k_n=1$) such that $F(T)=\{\rho\in K:T\rho=\rho\}$. Let $\{\alpha_n\}_{n\geq 0}$, $\{\beta^k_n\}_{n\geq 0}$ be real sequences in $[0,1]$ satisfying the conditions: (i) $\sum_{n\geq 0}\alpha_n=\infty$ (ii) $\lim_{n\to\infty}\alpha_n,\beta^k_n=0,\quad k=1, 2,\ldots,p-1$. For arbitrary $x_0\in K$, let $\{x_n\}_{n\geq 0}$ be a multi-step sequence iteratively defined by \begin{align} x_{n+1}=(1-lpha_n)x_n+lpha_nT^ny^1_n,\quad n\geq 0,otag y^k_n=(1-\beta^k_n)x_n+\beta^k_nT^ny^{k+1}_n,\quad k=1, 2,..., p-2,otag y^{p-1}_n=(1-\beta^{p-1}_n)x_n+\beta^{p-1}_nT^nx_n,\quad n\geq 0, p\geq 2. \end{align} Then, $\{x_n\}_{n\geq 0}$ converges strongly to $\rho\in F(T)$. The result proved in this note significantly improve the results of Kim et al. \cite{k1}.
DOI : 10.2298/PIM1512281M
Classification : 47H10 46A03L
Keywords: Mann iteration, multi-step iteration, asymptotically generalized $\Phi$-hemi contractive mappings, nearly Lipschitzian mapping, uniformly $L$-Lipschitzian, Banach space
@article{10_2298_PIM1512281M,
     author = {Adesanmi Alao Mogbademu},
     title = {A {Convergence} {Theorem} of {Multi-Step} {Iterative} {Scheme} for {Nonlinear} {Maps}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {281 },
     publisher = {mathdoc},
     volume = {_N_S_98},
     number = {112},
     year = {2015},
     doi = {10.2298/PIM1512281M},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1512281M/}
}
TY  - JOUR
AU  - Adesanmi Alao Mogbademu
TI  - A Convergence Theorem of Multi-Step Iterative Scheme for Nonlinear Maps
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 281 
VL  - _N_S_98
IS  - 112
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1512281M/
DO  - 10.2298/PIM1512281M
LA  - en
ID  - 10_2298_PIM1512281M
ER  - 
%0 Journal Article
%A Adesanmi Alao Mogbademu
%T A Convergence Theorem of Multi-Step Iterative Scheme for Nonlinear Maps
%J Publications de l'Institut Mathématique
%D 2015
%P 281 
%V _N_S_98
%N 112
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1512281M/
%R 10.2298/PIM1512281M
%G en
%F 10_2298_PIM1512281M
Adesanmi Alao Mogbademu. A Convergence Theorem of Multi-Step Iterative Scheme for Nonlinear Maps. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 281 . doi : 10.2298/PIM1512281M. http://geodesic.mathdoc.fr/articles/10.2298/PIM1512281M/

Cité par Sources :