A Convergence Theorem of Multi-Step Iterative Scheme for Nonlinear Maps
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 281
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $K$ be a nonempty closed convex subset of a real Banach space $X$, $T:K\to K$ a nearly uniformly $L$-Lipschitzian (with sequence $\{r_n\}$) asymptotically generalized $\Phi$-hemicontractive mapping (with sequence ${k_n}\subset [1,\infty)$, $\lim_{n\to\infty} k_n=1$) such that $F(T)=\{\rho\in K:T\rho=\rho\}$. Let $\{\alpha_n\}_{n\geq 0}$, $\{\beta^k_n\}_{n\geq 0}$ be real sequences in $[0,1]$ satisfying the conditions: (i) $\sum_{n\geq 0}\alpha_n=\infty$ (ii) $\lim_{n\to\infty}\alpha_n,\beta^k_n=0,\quad k=1, 2,\ldots,p-1$. For arbitrary $x_0\in K$, let $\{x_n\}_{n\geq 0}$ be a multi-step sequence iteratively defined by \begin{align} x_{n+1}=(1-lpha_n)x_n+lpha_nT^ny^1_n,\quad n\geq 0,otag
y^k_n=(1-\beta^k_n)x_n+\beta^k_nT^ny^{k+1}_n,\quad k=1, 2,..., p-2,otag
y^{p-1}_n=(1-\beta^{p-1}_n)x_n+\beta^{p-1}_nT^nx_n,\quad n\geq 0, p\geq 2. \end{align} Then, $\{x_n\}_{n\geq 0}$ converges strongly to $\rho\in F(T)$. The result proved in this note significantly improve the results of Kim et al. \cite{k1}.
Classification :
47H10 46A03L
Keywords: Mann iteration, multi-step iteration, asymptotically generalized $\Phi$-hemi contractive mappings, nearly Lipschitzian mapping, uniformly $L$-Lipschitzian, Banach space
Keywords: Mann iteration, multi-step iteration, asymptotically generalized $\Phi$-hemi contractive mappings, nearly Lipschitzian mapping, uniformly $L$-Lipschitzian, Banach space
@article{10_2298_PIM1512281M,
author = {Adesanmi Alao Mogbademu},
title = {A {Convergence} {Theorem} of {Multi-Step} {Iterative} {Scheme} for {Nonlinear} {Maps}},
journal = {Publications de l'Institut Math\'ematique},
pages = {281 },
publisher = {mathdoc},
volume = {_N_S_98},
number = {112},
year = {2015},
doi = {10.2298/PIM1512281M},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1512281M/}
}
TY - JOUR AU - Adesanmi Alao Mogbademu TI - A Convergence Theorem of Multi-Step Iterative Scheme for Nonlinear Maps JO - Publications de l'Institut Mathématique PY - 2015 SP - 281 VL - _N_S_98 IS - 112 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1512281M/ DO - 10.2298/PIM1512281M LA - en ID - 10_2298_PIM1512281M ER -
%0 Journal Article %A Adesanmi Alao Mogbademu %T A Convergence Theorem of Multi-Step Iterative Scheme for Nonlinear Maps %J Publications de l'Institut Mathématique %D 2015 %P 281 %V _N_S_98 %N 112 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM1512281M/ %R 10.2298/PIM1512281M %G en %F 10_2298_PIM1512281M
Adesanmi Alao Mogbademu. A Convergence Theorem of Multi-Step Iterative Scheme for Nonlinear Maps. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 281 . doi: 10.2298/PIM1512281M
Cité par Sources :