On Knaster's Problem
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 43 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Dold's theorem gives sufficient conditions for proving that there is no $G$-equivariant mapping between two spaces. We prove a generalization of Dold's theorem, which requires triviality of homology with some coefficients, up to dimension $n$, instead of $n$-connectedness. Then we apply it to a special case of Knaster's famous problem, and obtain a new proof of a result of C.\,T. Yang, which is much shorter and simpler than previous proofs. Also, we obtain a positive answer to some other cases of Knaster's problem, and improve a result of V.\,V. Makeev, by weakening the conditions.
DOI : 10.2298/PIM151030032J
Classification : 52A35 55N91, 05E18, 55M20
Keywords: $G$-equivariant mapping, Dold's theorem, cohomological index, Knaster's problem, configuration space, Stiefel manifold
@article{10_2298_PIM151030032J,
     author = {Marija Jeli\'c},
     title = {On {Knaster's} {Problem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {43 },
     publisher = {mathdoc},
     volume = {_N_S_99},
     number = {113},
     year = {2016},
     doi = {10.2298/PIM151030032J},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM151030032J/}
}
TY  - JOUR
AU  - Marija Jelić
TI  - On Knaster's Problem
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 43 
VL  - _N_S_99
IS  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM151030032J/
DO  - 10.2298/PIM151030032J
LA  - en
ID  - 10_2298_PIM151030032J
ER  - 
%0 Journal Article
%A Marija Jelić
%T On Knaster's Problem
%J Publications de l'Institut Mathématique
%D 2016
%P 43 
%V _N_S_99
%N 113
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM151030032J/
%R 10.2298/PIM151030032J
%G en
%F 10_2298_PIM151030032J
Marija Jelić. On Knaster's Problem. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 43 . doi : 10.2298/PIM151030032J. http://geodesic.mathdoc.fr/articles/10.2298/PIM151030032J/

Cité par Sources :