Geometry of Pentagonal Quasigroups
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 109 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Pentagonal quasigroups are IM-quasigroups in which the additional identity of pentagonality holds. Motivated by the example $C(q)$, where $q$ is a solution of the equation $q^4-3q^3+4q^2-2q+1=0$, some basic geometric concepts are introduced and studied in a general pentagonal quasigroup. Such concepts are parallelogram, midpoint of a segment, regular pentagon and regular decagon. Some theorems of Euclidean plane which use these concepts are stated and proved in pentagonal quasigroups.
DOI : 10.2298/PIM141208013V
Classification : 20N05
Keywords: IM-quasigroup, parallelogram, midpoint, regular pentagon, regular decagon
@article{10_2298_PIM141208013V,
     author = {Stipe Vidak},
     title = {Geometry of {Pentagonal} {Quasigroups}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {109 },
     publisher = {mathdoc},
     volume = {_N_S_99},
     number = {113},
     year = {2016},
     doi = {10.2298/PIM141208013V},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM141208013V/}
}
TY  - JOUR
AU  - Stipe Vidak
TI  - Geometry of Pentagonal Quasigroups
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 109 
VL  - _N_S_99
IS  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM141208013V/
DO  - 10.2298/PIM141208013V
LA  - en
ID  - 10_2298_PIM141208013V
ER  - 
%0 Journal Article
%A Stipe Vidak
%T Geometry of Pentagonal Quasigroups
%J Publications de l'Institut Mathématique
%D 2016
%P 109 
%V _N_S_99
%N 113
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM141208013V/
%R 10.2298/PIM141208013V
%G en
%F 10_2298_PIM141208013V
Stipe Vidak. Geometry of Pentagonal Quasigroups. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 109 . doi : 10.2298/PIM141208013V. http://geodesic.mathdoc.fr/articles/10.2298/PIM141208013V/

Cité par Sources :