Finite Groups with Three Conjugacy Class Sizes of Certain Elements
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 265 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a finite group and $m,n$ two positive coprime integers. We prove that the set of conjugacy class sizes of primary and biprimary elements of $G$ is $\{1,m,n\}$ if and only if $G$ is quasi-Frobenius with abelian kernel and complement.
DOI : 10.2298/PIM140905001J
Classification : 20D10, 20E45
Keywords: finite groups, conjugacy class sizes, primary and biprimary elements
@article{10_2298_PIM140905001J,
     author = {Quinhui Jiang and Changguo Shao},
     title = {Finite {Groups} with {Three} {Conjugacy} {Class} {Sizes} of {Certain} {Elements}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {265 },
     publisher = {mathdoc},
     volume = {_N_S_98},
     number = {112},
     year = {2015},
     doi = {10.2298/PIM140905001J},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM140905001J/}
}
TY  - JOUR
AU  - Quinhui Jiang
AU  - Changguo Shao
TI  - Finite Groups with Three Conjugacy Class Sizes of Certain Elements
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 265 
VL  - _N_S_98
IS  - 112
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM140905001J/
DO  - 10.2298/PIM140905001J
LA  - en
ID  - 10_2298_PIM140905001J
ER  - 
%0 Journal Article
%A Quinhui Jiang
%A Changguo Shao
%T Finite Groups with Three Conjugacy Class Sizes of Certain Elements
%J Publications de l'Institut Mathématique
%D 2015
%P 265 
%V _N_S_98
%N 112
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM140905001J/
%R 10.2298/PIM140905001J
%G en
%F 10_2298_PIM140905001J
Quinhui Jiang; Changguo Shao. Finite Groups with Three Conjugacy Class Sizes of Certain Elements. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 265 . doi : 10.2298/PIM140905001J. http://geodesic.mathdoc.fr/articles/10.2298/PIM140905001J/

Cité par Sources :