Finite Groups with Three Conjugacy Class Sizes of Certain Elements
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 265
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be a finite group and $m,n$ two positive coprime integers. We prove that the set of conjugacy class sizes of primary and biprimary elements of $G$ is $\{1,m,n\}$ if and only if $G$ is quasi-Frobenius with abelian kernel and complement.
Classification :
20D10, 20E45
Keywords: finite groups, conjugacy class sizes, primary and biprimary elements
Keywords: finite groups, conjugacy class sizes, primary and biprimary elements
@article{10_2298_PIM140905001J,
author = {Quinhui Jiang and Changguo Shao},
title = {Finite {Groups} with {Three} {Conjugacy} {Class} {Sizes} of {Certain} {Elements}},
journal = {Publications de l'Institut Math\'ematique},
pages = {265 },
publisher = {mathdoc},
volume = {_N_S_98},
number = {112},
year = {2015},
doi = {10.2298/PIM140905001J},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM140905001J/}
}
TY - JOUR AU - Quinhui Jiang AU - Changguo Shao TI - Finite Groups with Three Conjugacy Class Sizes of Certain Elements JO - Publications de l'Institut Mathématique PY - 2015 SP - 265 VL - _N_S_98 IS - 112 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM140905001J/ DO - 10.2298/PIM140905001J LA - en ID - 10_2298_PIM140905001J ER -
%0 Journal Article %A Quinhui Jiang %A Changguo Shao %T Finite Groups with Three Conjugacy Class Sizes of Certain Elements %J Publications de l'Institut Mathématique %D 2015 %P 265 %V _N_S_98 %N 112 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM140905001J/ %R 10.2298/PIM140905001J %G en %F 10_2298_PIM140905001J
Quinhui Jiang; Changguo Shao. Finite Groups with Three Conjugacy Class Sizes of Certain Elements. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 265 . doi: 10.2298/PIM140905001J
Cité par Sources :