Irrationality Measures for Continued Fractions With Arithmetic Functions
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 139
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $f(n)$ or the base-$2$ logarithm of $f(n)$ be either $d(n)$ (the divisor function),
$\sigma(n)$ (the divisor-sum function), $\varphi(n)$ (the Euler totient function),
$\omega(n)$ (the number of distinct prime factors of $n$) or $\Omega(n)$ (the total number of prime factors of $n$).
We present good lower bounds for $\bigl|\frac MN-\alpha\bigr|$
in terms of $N$, where $\alpha=[0;f(1),f(2),\ldots]$.
Classification :
11J82, 11J70
Keywords: continued fraction, arithmetic functions, measure of irrationality
Keywords: continued fraction, arithmetic functions, measure of irrationality
@article{10_2298_PIM140618001H,
author = {Jaroslav Han\v{c}l and Kalle Lepp\"al\"a},
title = {Irrationality {Measures} for {Continued} {Fractions} {With} {Arithmetic} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {139 },
publisher = {mathdoc},
volume = {_N_S_97},
number = {111},
year = {2015},
doi = {10.2298/PIM140618001H},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM140618001H/}
}
TY - JOUR AU - Jaroslav Hančl AU - Kalle Leppälä TI - Irrationality Measures for Continued Fractions With Arithmetic Functions JO - Publications de l'Institut Mathématique PY - 2015 SP - 139 VL - _N_S_97 IS - 111 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM140618001H/ DO - 10.2298/PIM140618001H LA - en ID - 10_2298_PIM140618001H ER -
%0 Journal Article %A Jaroslav Hančl %A Kalle Leppälä %T Irrationality Measures for Continued Fractions With Arithmetic Functions %J Publications de l'Institut Mathématique %D 2015 %P 139 %V _N_S_97 %N 111 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM140618001H/ %R 10.2298/PIM140618001H %G en %F 10_2298_PIM140618001H
Jaroslav Hančl; Kalle Leppälä. Irrationality Measures for Continued Fractions With Arithmetic Functions. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 139 . doi: 10.2298/PIM140618001H
Cité par Sources :