Irrationality Measures for Continued Fractions With Arithmetic Functions
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 139 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $f(n)$ or the base-$2$ logarithm of $f(n)$ be either $d(n)$ (the divisor function), $\sigma(n)$ (the divisor-sum function), $\varphi(n)$ (the Euler totient function), $\omega(n)$ (the number of distinct prime factors of $n$) or $\Omega(n)$ (the total number of prime factors of $n$). We present good lower bounds for $\bigl|\frac MN-\alpha\bigr|$ in terms of $N$, where $\alpha=[0;f(1),f(2),\ldots]$.
DOI : 10.2298/PIM140618001H
Classification : 11J82, 11J70
Keywords: continued fraction, arithmetic functions, measure of irrationality
@article{10_2298_PIM140618001H,
     author = {Jaroslav Han\v{c}l and Kalle Lepp\"al\"a},
     title = {Irrationality {Measures} for {Continued} {Fractions} {With} {Arithmetic} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {139 },
     publisher = {mathdoc},
     volume = {_N_S_97},
     number = {111},
     year = {2015},
     doi = {10.2298/PIM140618001H},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM140618001H/}
}
TY  - JOUR
AU  - Jaroslav Hančl
AU  - Kalle Leppälä
TI  - Irrationality Measures for Continued Fractions With Arithmetic Functions
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 139 
VL  - _N_S_97
IS  - 111
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM140618001H/
DO  - 10.2298/PIM140618001H
LA  - en
ID  - 10_2298_PIM140618001H
ER  - 
%0 Journal Article
%A Jaroslav Hančl
%A Kalle Leppälä
%T Irrationality Measures for Continued Fractions With Arithmetic Functions
%J Publications de l'Institut Mathématique
%D 2015
%P 139 
%V _N_S_97
%N 111
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM140618001H/
%R 10.2298/PIM140618001H
%G en
%F 10_2298_PIM140618001H
Jaroslav Hančl; Kalle Leppälä. Irrationality Measures for Continued Fractions With Arithmetic Functions. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 139 . doi : 10.2298/PIM140618001H. http://geodesic.mathdoc.fr/articles/10.2298/PIM140618001H/

Cité par Sources :