Singles in a Markov Chain
Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 27
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\{X_i,i\geq 1\}$ denote a sequence of variables that take values in $\{0,1\}$
and suppose that the sequence forms a Markov chain with transition matrix $P$
and with initial distribution $(q,p)=(P(X_1=0),P(X_1=1))$.
Several authors have studied the quantities $S_n$, $Y(r)$ and $AR(n)$,
where $S_n=\sum_{i=1}^nX_i$ denotes the number of successes,
where $Y(r)$ denotes the number of experiments up to the $r$-th success
and where $AR(n)$ denotes the number of runs.
In the present paper we study the number of singles $AS(n)$ in the vector $(X_1,X_2,\dots,X_n)$.
A single in a sequence is an isolated value of $0$ or $1$, i.e., a run of length $1$.
Among others we prove a central limit theorem for $AS(n)$.
@article{10_2298_PIM0897027O,
author = {Edward Omey and Stefan Van Gulck},
title = {Singles in a {Markov} {Chain}},
journal = {Publications de l'Institut Math\'ematique},
pages = {27 },
publisher = {mathdoc},
volume = {_N_S_83},
number = {97},
year = {2008},
doi = {10.2298/PIM0897027O},
zbl = {1199.60265},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0897027O/}
}
TY - JOUR AU - Edward Omey AU - Stefan Van Gulck TI - Singles in a Markov Chain JO - Publications de l'Institut Mathématique PY - 2008 SP - 27 VL - _N_S_83 IS - 97 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0897027O/ DO - 10.2298/PIM0897027O LA - en ID - 10_2298_PIM0897027O ER -
Edward Omey; Stefan Van Gulck. Singles in a Markov Chain. Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 27 . doi: 10.2298/PIM0897027O
Cité par Sources :